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Chapter I

Asymptotics—A Behavioural Survey

1. ORIGIN AND NATURE OF ASYMPTOTIC EXPANSIONS

To help fix ideas, let us start by examining types of expansion which may be
developed for the well-known error function

d(x) = Zn"*fxe"" du. 1)
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This function is important in its own right, and of especial interest in
asymptotics through having provided one of the earliest examples historically
of a Stokes discontinuity (Stokes, 1864).

Expansion of the exponential as a power series, followed by term by term
integration, leads to the absolutely convergent series
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Though theoretically exact for all magnitudes and phases of the variable,
such a convergent series can prove dismally inconvenient except for small
values. For instance, in the series (2), individual terms do not begin to decrease
until 5 ~ |x?|, and their sum does not even begin to approximate the
function well until about three times as many terms have been
assembled. More seriously, for large |x| the final sum is far smaller than
the largest individual terms, which therefore have to be calculated
to many extra significant figures. In more advanced examples than ),
the presence within the summation of a factor which is not s0
simple—e.g. a zeta-function or worse—can render this a daunting
task. .
Fortunately, the alternative “asymptotic” approach produces a series
in which, by contrast, ease of calculation to a prescribed accuracy

increases with |x|. We shall first deal with the phase sector [ph x| < iz.
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The observation Zn”’}ji’," e™** du = 1 enables us to write

) 0

o(x) =1 —2n-’z~f e du. 3
X

In the new integral, e™** is of significant magnitude only near the

lower limit u = x, and can therefore be expanded about this point. It

is convenient to choose as expansion parameter the variable f = u? — x2,

whereupon

b)) =1— e_sz: e (1 + f)-% df. @)
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Without pausing at this stage to examine the validity of ensuing steps,
the expansion about the point /= 0 required for insertion is
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Iphx| < 3x. (6)

As will become clear when we examine the general question of definition in
Section 5, it is advisable at the outset to make a careful distinction
in terminology between:

() the right-hand side of the equation (6), “the asymptotic expansion
of ¢(x) in this phase range”,

(i) the second contribution, *“a component asymptotic series”, and
(iii) the summation itself, “an asymptotic power series”.

This is also semantically strict, since in such a context “expansion” refers to
an algebraic dilatation however composed, whereas the word “‘series”
means more narrowly “an ordered sequence of systematically constructed
terms”.

The terms in the asymptotic power series X(r — ) 1/(—x*)" behave in
a radically different way from those in the convergent series
T(—x?)*/s!(2s + 1). For moderate or large |x|, the terms in the former
first progressively decrease in magnitude, then reach a minimum around
r ~ |x?| and thereafter increase; while those in the latter first increase,
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reach a maximum around s~ |x?| and thereafter decrease. Because of
the ultimate progressive increase in magnitude of its terms, an asymptotic
power series is divergent. Nevertheless, even if only crudely broken off at
its least term (thereby retaining only the first few terms), it produces
remarkably accurate results, especially for large values of the variable.

Why does such a series derived from the asymptotic approach end by
diverging? To answer this, let us examine the steps in the foregoing
derivation more closely. The binomial theorem for expanding (1 + f/x2)*
is valid only if either the expansion terminates (x a positive integer) or
| f/x*] < 1. The former is not relevant to (1 + f/x%)~* in (5), and yet we
see that in the next step (6) we did suppose the binomial expansion to hold
not only for f from 0 to x?, but further from x? to co. The first terms
in (6) yield highly accurate values for ¢(x) when x is large because the
exponential factor ™/ makes the integral negligible long before f reaches
x* and the questionable region beyond. But however large x may be,
sufficiently late terms diverge because of the extension of the binomial
expansion beyond its circle of convergence.

More generally, the asymptotic expansion for a function [e~F®G(u) du,
where G is slowly varying, is ascertained by first separating out the ranges
of integration, U say, through which e~ F decreases monotonically right
down to zero (equation (3) in our example), then within these ranges
changing the variable of integration to F, thus

f e"F Gy = f " e F [G(dF du)] dF
U F,

[\]

(cf. (4)), expanding in each G/(dF/du) as a Taylor series (cf. (5)), and
integrating term by term (cf. (6)). Each resultant asymptotic series is
ultimately divergent because in its progress from F, to oo the variable
F reaches and then exceeds the radius of convergence in the F-plane
of this Taylor series for G/(dF/du).

Next, we examine the consequences of outstepping the circle of
convergence. No error of magnitude or phase has been incurred; when
| f/x*| = 1 the binomial expansion (5) retains perfect precision of meaning,
namely that the series is to be summed [to (1 + f/x*)~*] in exactly the
same way as if it had lain within the circle of convergence. The ultimate
convergence failure in an asymptotic power series thus has its origin in a
solely-symbolic mechanism of continuation, not involving any numerical
inexactitude. Moreover the technical misdemeanour in continuation can
be exactly atoned by applying a reverse process of symbolic continuation
when interpreting late terms. This conclusion is in stark contrast with the
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long accepted non-sequitur according to which such an expansion must
contain an inherent vagueness and inaccuracy because its late terms are
not comprehensible as they standf.

By a theorem of Darboux (1878), late terms in a Taylor series
originate from the singularity in the function expanded which lies closest
to the origin of expansion (Chapter VII, Section 2). For example, late terms
in (5) originate from the branch point of (1+f [x?)"% located at
f = —x* More generally, if o is a positive integer (1 +f [x?)*
possesses no singularities and its expansion correspondingly terminates
and so has no late terms; whereas if o is a negative integer so the function
has a pole at f = —x?, or if « is fractional so it has a branch point there,
the expansion does not terminate and its late terms are dictated by the
singularity. According to the binomial theorem,
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showing the late terms to be alike whether the singularity consists of a
pole or a branch point. By the Darboux theorem, late terms in a Taylor
series for some more complicated function of f will also be of similar
form, since they depend only on the behaviour of that function in the
immediate neighbourhood of its singularity closest to the origin of
expansion at f = 0. Reference to the derivation of (6) then leads to the
expectation that, barring pathological cases, sufficiently late terms r > 1
of any asymptotic power series will transpire to be expressible in a
standard limiting form (r + constant)!/(variable)”, the accuracy of this
limiting representation increasing with r. (The full representation for
finite r will consist of a decreasing sequence of like contributions). This
conclusion, which will be verified in varying contexts throughout our
investigation, is critically important in two ways: first, because it
provides a valuable lead on how asymptotic power series and expansions
containing them might best be defined; and second, because it shows that
substantially a single theory of interpretation will apply equally to late
terms of all such asymptotic series (Chapters XXI onwards).

+ There are indications that some mathematicians, active in the field before the alleged
vagueness got written into the theory by Poincaré’s prescription, were unsure of this infer-
ence. Especially interesting is the reservation in parenthesis in the following extract from
Stokes’ own account of the Stokes discontinuity: “A semiconvergent series (considered
numerically, and apart from its analytic form) defines a function only subject to a certain
amount of vagueness which is so much the smaller as the modulus of the variable is larger”.
Stokes may well have realised that while the sum of an asymptotic series can be determined
only approximately from the numerical values of its terms, this does not exclude the possi-
bility that precise information might be extractable from their analytic form. ~



