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Chapter One

Introduction

This monograph offers a derivation of all classical and pXo@al semisimple
Lie algebras through a classification of “primitive invarig.” Using somewhat
unconventional notation inspired by the Feynman diagradmeantum field theory,
the invariant tensors are represented by diagrams; sewaits bn what simple
groups could possibly exist are deduced by requiring thedircible representations
be of integer dimension. The method provides the full Kgh@artan list of all
possible simple Lie algebras, but fails to prove the existenf Iy, Eg, F7 and Fs.
One simple quantum field theory question started this ptojdtat is the group-
theoretic factor for the following Quantum Chromodynangtson self-energy di-

agram
@ 7 (1.1)

| first computed the answer f&#U (n). There was a hard way of doing it, using
Gell-Mannf;;; andd;;;, coefficients. There was also an easy way, where one could
doodle oneself to the answer in a few lines. This is the “bérckts” method that will
be developed here. It works nicely f80(n) andSp(n) as well. Out of curiosity,

| wanted the answer for the remaining five exceptional grolipss engendered
further thought, and that which | learned can be better wided as the answer to
a different question. Suppose someone came into your offid@sked, “On planet
Z, mesons consist of quarks and antiquarks, but baryonsiodhtee quarks in

a symmetric color combination. What is the color group?” Emswer is neither
trivial nor without some beauty (planét quarks can come in 27 colors, and the
color group can bé).

Once you know how to answer such group-theoretical questiau can answer
many others. This monograph tells you how. Like the braiig divided into two
halves: the plodding half and the interesting half.

The plodding half describes how group-theoretic calcatetiare carried out for
unitary, orthogonal, and symplectic groups (chapieis). Exceptfor the “negative
dimensions” of chaptet3and the “spinsters” of chapté#, none of that is new, but
the methods are helpful in carrying out daily chores, sucbvatuating Quantum
Chromodynamics group-theoretic weights, evaluatingcktgauge theory group
integrals, computing/N corrections, evaluating spinor traces, evaluating casijmi
implementing evaluation algorithms on computers, and so on

The interesting half, chapteli$-21, describes the “exceptional magic” (a new
construction of exceptional Lie algebras), the “negativeahsions” (relations be-
tween bosonic and fermionic dimensions). Open problemis lio literature, soft-
ware and other resources, and personal confessions agatezlego the epilogue,
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monograph’s Web pagerdtracks.eu. The methods used are applicable to field-
theoretic model building. Regardless of their potentigdlaations, the results are
sufficiently intriguing to justify this entire undertakinign what follows we shall for-
getabout quarks and quantum field theory, and offer insteach@what unorthodox
introduction to the theory of Lie algebras. If the style ig Bourbaki 29, it is not

so by accident.

There are two complementary approaches to group theorlelcanonicalap-
proach one chooses the basis, or the Clebsch-Gordan ceefficas simply as
possible. This is the method which Killind$9 and Cartan43] used to obtain the
complete classification of semisimple Lie algebras, ancdivhas been brought to
perfection by Coxeterd/] and Dynkin [LO5. There exist many excellent reviews
of applications of Dynkin diagram methods to physics, sucheés. 313 124.

Inthetensorialapproach pursued here, the bases are arbitrary, and extysnt
is invariant under change of basis. Tensor calculus degdsttli with the invariant
blocks of the theory and gives the explicit forms of the imaats, Clebsch-Gordan
series, evaluation algorithms for group-theoretic wesggiic.

The canonical approach is often impractical for computetigourposes, as a
choice of basis requires a specific coordinatization oféipegsentation space. Usu-
ally, nothing that we want to compute depends on such a coatidation; physical
predictions are pure scalar numbers (“color singlets”thvaill tensorial indices
summed over. However, the canonical approach can be vefyl irseletermining
chains of subgroup embeddings. We refer the reader to r&fs, 26 for such
applications. Here we shall concentrate on tensorial nistHzorrowing from Car-
tan and Dynkin only the nomenclature for identifying irrethle representations.
Extensive listings of these are given by McKay and Patetd][and Slansky$1d.

To appreciate the sense in which canonical methods areatiqgah let us consider
using them to evaluate the group-theoretic factor assetiaith diagram 1.1)
for the exceptional grougrs. This would involve summations over 8 structure
constants. The Cartan-Dynkin construction enables usristaact them explicitly;
an E structure constant has ab@di?3 /6 elements, and the direct evaluation of the
group-theoretic factor for diagrarh.()) is tedious even on a computer. An evaluation
in terms of a canonical basis would be equally tediousSfoi(16); however, the
tensorial approach illustrated by the example of se@i@yields the answer for all
SU(n) in a few steps.

Simplicity of such calculations is one motivation for fortating a tensorial ap-
proach to exceptional groups. The other is the desire torstated their geometrical
significance. The Killing-Cartan classification is basedaamapping of Lie alge-
bras onto a Diophantine problem on the Cartan root lattibes fiields an exhaustive
classification of simple Lie algebras, but gives no insigtd the associated geome-
tries. In the 19th century, the geometries or the invarinabty were the central
guestion, and Cartan, in his 1894 thesis, made an attemgéiaify the primitive
invariants. Most of the entries in his classification weredhassical groupSU (n),
SO(n), andSp(n). Of the five exceptional algebras, Cartér][identifiedG, as the
group of octonion isomorphisms and noted already in hisgshbatF; has a skew-
symmetric quadratic and a symmetric quartic invariantkBon characterizedls
as a 27-dimensional group with a cubic invariant. The faat the orthogonal, uni-
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tary and symplectic groups were invariance groups of reahpgiex, and quaternion
norms suggested that the exceptional groups were assbwidkeoctonions, but it
took more than 50 years to establish this connection. Thaireng four exceptional
Lie algebras emerged as rather complicated constructiomsdctonions and Jordan
algebras, known as thigeudenthal-Tits constructio® mathematician’s history of
this subject is given in a delightful review by Freudenthai(]. The problem has
been taken up by physicists twice, first by Jordan, von Neunyemd Wigner 73,
and then in the 1970s by Gursey and collaboratof$)[151, 157. Jordanet al’s
effort was a failed attempt at formulating a new quantum raeds that would ex-
plain the neutron, discovered in 1932. However, it gavetdgte Jordan algebras,
which became a mathematics field in itself. Glrsegl. took up the subject again
in the hope of formulating a quantum mechanics of quark cenfent; however,
the main applications so far have been in building modelsafd unification.

Although beautiful, the Freudenthal-Tits constructiosti#f not practical for the
evaluation of group-theoretic weights. The reason is thisconstruction involves
[3 x 3] octonionic matrices with octonion coefficients, and the -B#8ensional
defining space of’s is written as a direct sum of various subspaces. This is conve
nient for studying subgroup embedding$#], but awkward for group-theoretical
computations.

The inspiration for the primitive invariants constructicame from the axiomatic
approach of SpringeB[L5 316 and Brown 34]: one treats the defining representa-
tion as a single vector space, and characterizes the prnnitiariants by algebraic
identities. This approach solves the problem of formutagfficient tensorial al-
gorithms for evaluating group-theoretic weights, andégs some intuition about
the geometrical significance of the exceptional Lie gro&ough intuition might be
of use to quark-model builders. For example, bec&ii$€3) has a cubic invariant
€"*°q,q5q., Quantum Chromodynamics, based on this color group, camano-
date 3-quark baryons. Are there any other groups that caglohamodate 3-quark
singlets? As we shall seé&:,, Iy, and Eg are some of the groups whose defining
representations possess such invariants.

Beyond its utility as a computational technique, the priveitnvariants construc-
tion of exceptional groups yields several unexpected teskirst, it generates in a
somewhat magical fashion a triangular array of Lie algelttegicted in figure.. 1
This is a classification of Lie algebras different from Calsalassification; in this
new classification, all exceptional Lie groups appear irsto@e series (the bottom
line of figure1.1). The second unexpected result is that many groups and group
representations are mutually related by interchangesrofrstrizations and anti-
symmetrizations and replacement of the dimension parameig —n. | call this
phenomenon “negative dimensions.”

For me, the greatest surprise of all is that in spite of alitfagjic and the strange
diagrammatic notation, the resulting manuscriptis iness@ot very differentfrom
Wigner's [347] 1931 classic. Regardless of whether one is doing atomadeat or
particle physics, all physical predictions (“spectrodgcdpvels”) are expressed in
terms of Wigner's3n-j coefficients, which can be evaluated by means of recursive
or combinatorial algorithms.

Parenthetically, this book isot a book about diagrammatic methods in group
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Figure 1.1 The “Magic Triangle” for Lie algebras. The “Madstjuare” is framed by the
double line. For a discussion, consult chagér

theory. If you master a traditional notation that coverg@aglics in this book in a
uniform way, more elegantly than birdtracks, more powerda.yl would love to
learn it.
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Chapter Two

A preview

The theory of Lie groups presented here had mutated gréatiyghout its gen-
esis. It arose from concrete calculations motivated by ighygroblems; but as
it was written, the generalities were collected into introtbry chapters, and the
applications receded later and later into the text.

As a result, the first seven chapters are largely a compilatialefinitions and
general results that might appear unmotivated on first neadine reader is advised
to work through the examples, secti@r? and sectior?.3in this chapter, jump to
the topic of possible interest (such as the unitary groupep @19, or the s family,
chapterl?), and birdtrack if able or backtrack when necessary.

The goal of these notes is to provide the reader with a setsi¢ lgaoup-theoretic
tools. They are not particularly sophisticated, and they o@ a few simple ideas.
The text is long, because various notational conventiorangles, special cases,
and applications have been laid out in detail, but the basicepts can be stated in a
few lines. We shall briefly state them in this chapter, togettith severalillustrative
examples. This preview presumes that the reader has coaisidgrior exposure
to group theory; if a concept is unfamiliar, the reader i€nefd to the appropriate
section for a detailed discussion.

2.1 BASIC CONCEPTS

A typical quantum theory is constructed from a few buildihgdiks, which we shall

refer to as thelefining spacé’. They form the defining multiplet of the theory —

for example, the “quark wave functiong;. The group-theoretical problem consists

of determining the symmetry grouipe., the group of all linear transformations
q(/z:Gabqb a7b:1’27""n7

which leaves invariant the predictions of the theory. Trhe n] matrices form the
defining representatiofor “rep” for short) of the invariance group The conjugate
multipletg (“antiquarks”) transforms as

q/a _ Gabqb .
Combinations of quarks and antiquarks transforrteasors such as
Pty =Gap®, a praer?,
G’ dT =G Gy Gy°

(distinction betweeit’,,> andG*, as well as other notational details are explained
in section3.2). Tensor reps are plagued by a proliferation of indices s€hrdices
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can either be replaced by a few collective indices:

a2y

QA = GQBQB ) (21)
or represented diagrammatically:

a f a f
b €=nph e,
c d c—> d
(Diagrammatic notation is explained in sectiéri.) Collective indices are conve-
nient for stating general theorems; diagrammatic notatmeds up explicit calcu-
lations.
A polynomial

A A

G

Y A A
Y A A
VANWANIVAN
Y A A

H(G,T,....8) =hy, ¢’ .. s.

is an invariant if (and only if) for any transformatiait € G and for any set of
vectorsy, r, s, . . . (see sectio.4)

H(Gq,Gr,...Gs) = H(q,T,...,s). (2.2)

An invariance group is defined by ifgimitive invariants i.e., by a list of the
elementary “singlets” of the theory. For example, the agth@al groupO(n) is
defined as the group of all transformations that leaves tigiteof a vector invariant
(see chaptet0). Another example is the colaiU (3) of QCD that leaves invariant
the mesongyq) and the baryong;qq) (see sectioi5.9. A complete list of primitive
invariantdefineghe invariance group via the invariance conditiahg); only those
transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of ptive invariant tensors
in order to define them. For example, thén) group is defined by the requirement
that it leaves invariant a symmetric and invertible teng@r= g, det(g) # 0.
Such definition is basis independent, while a componentitiefiry;; = 1, g12 =
0,922 = 1, ...relies on a specific basis choice. We shall define all sim@egtoups
in this manner, specifying the primitive invariants only tyeir symmetry and by
the basis-independent algebraic relations that they natisfys

These algebraic relations (which | shall gadimitiveness conditionsre hard to
describe without first giving some examples. In their esse¢hey are statements of
irreducibility; for example, if the primitive invariant tesors aré;’, hau. andh®be,
then hq,.heP® must be proportional té¢, as otherwise the defining rep would be
reducible. (Reducibility is discussed in secti®’, section3.6, and chaptes.)

The objective of physicists’ group-theoretic calculasas a description of the
spectroscopy of a given theory. This entails identifying lisvels (irreducible mul-
tiplets), the degeneracy of a given level (dimension of thetiplet) and the level
splittings (eigenvalues of various casimirs). The baséaithat enables us to carry
this program through is extremely simple: a hermitian maten be diagonalized.
This fact has many names: Schur’s lemma, Wigner-Eckartémedull reducibility
of unitary reps, and so on (see sectibf and sectiorb.3). We exploit it by con-
structing invariant hermitian matricéd from the primitive invariant tensors. The
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M'’s have collective indices2(1) and act on tensors. Being hermitian, they can be
diagonalized

CMCtH = 0 0 X\

and their eigenvalues can be used to construct projectieratgrs that reduce mul-
tiparticle states into direct sums of lower-dimensionpkrésee sectio8.5):

=t : _ S : C. (2.3)

S

|

e

[y

\

O =

0

0

An explicit expression for the diagonalizing matéix Clebsch-Gordan coefficients
orclebschessectiord.2) is unnecessary — it is in fact often more of an impediment
than an aid, as it obscures the combinatorial nature of gthegretic computations
(see sectiod.8).

All that is needed in practice is knowledge of the charastierequation for the
invariant matrix)/ (see sectio3.5). The characteristic equation is usually a simple
consequence of the algebraic relations satisfied by thetpenmvariants, and the
eigenvalues\; are easily determined. The’ s determine the projection operators
P;,whichinturn contain all relevant spectroscopic inforimatthe rep dimensionis
given bytr P;, and the casimirs, 6's, crossing matrices, and recoupling coefficients
(see chapteb) are traces of various combinationsBf’s. All these numbers are
combinatori¢ they can often be interpreted as the number of differertrouys of
a graph, the number of singlets, and so on.

The invariance group is determined by considering infintestransformations

Go¥ ~ 68 +iei(T;)" .
The generatorg; are themselves clebsches, elements of the diagonalizitrixma
C for the tensor product of the defining rep and its conjugatesyTproject out
the adjoint rep and are constrained to satisfy ith@riance conditiong2.2) for

infinitesimal transformations (see sectibd and sectiont.5):
(T s + (T hay = (T)erhay, S ... =0

(&

+...=0. (24)




GroupTheory  version 9.0.1, April 8, 2011

8 CHAPTER 2
Primitive invariants Invariance group
qq SuU()
qq SOM) Sp(h)
aqq Eg+...
qqaqq Er+
higher order Eg+...

Figure 2.1 Additional primitive invariants induce chairfsrvariance subgroups.

As the corresponding projector operators are already knawerhave an explicit
construction of the symmetry group (at least infinitesignal we will not consider
discrete transformations).

If the primitive invariants are bilinear, the above procedieads to the familiar
tensor reps of classical groups. However, for trilinearighbr invariants the results
are more surprising. In particular, all exceptional Liegwe emerge in a pattern of
solutions which | will refer to as dagic Triangle.The flow of the argument (see
chapterl6) is schematically indicated in figu1, with the arrows pointing to the
primitive invariants that characterize a particular grdeqr examplef; primitives
are a sesquilinear invariaqg, a skew symmetrigp invariant, and a symmetrigqq
(see chaptez0).

The strategy is to introduce the invariants one by one, andysthe way in
which they split up previously irreducible reps. The firstanant might be realiz-
able in many dimensions. When the next invariant is addexdi¢se3.6), the group
of invariance transformations of the first invariant splito two subsets; those
transformations that preserve the new invariant, and tthegelo not. Such decom-
positions yield Diophantine conditions on rep dimensidreese conditions are so
constraining that they limit the possibilities to a few thah be easily identified.

To summarize: in the primitive invariants approach, all@ienLie groups, clas-
sical as well as exceptional, are constructed by (see ahafjte

1. defining a symmetry group by specifying a listpfmitive invariants

2. usingprimitivenessandinvarianceconditions to obtain algebraic relations
between primitive invariants;

3. constructingnvariant matricesacting on tensor product spaces;

4. constructingorojection operatordor reduced rep from characteristic equa-
tions for invariant matrices.
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Once the projection operators are known, all interestimgspscopic numbers can
be evaluated.

The foregoing run through the basic concepts was inevitabscure. Perhaps
working through the next two examples will make things aéearhe first example
illustrates computations with classical groups. The sd@@ample is more inter-
esting; it is a sketch of construction of irreducible repdigf

2.2 FIRST EXAMPLE: SU(n)

How do we describe the invariance group that preserves tha nba complex
vector? Thdist of primitivesconsists of a single primitive invariant,

n

m(p,q) = 050" =Y (Pa)"a -

a=1
The Kroneckepy is the only primitive invariant tensor. We can immediatelytey
down the twainvariant matriceson the tensor product of the defining space and its
conjugate,
d—e—cC
identity : 155 = 0,05 =
' a—>—b

d c
trace : T9¢ = 635 = ) C .
i a ]

The characteristic equatiorfior 7" written out in the matrix, tensor, and birdtrack
notations is

T?=nT
T3 1T =0656186; = nTgs

2= C

Here we have usedf = n, the dimension of the defining vector space. The roots
are\; = 0, \2 = n, and the correspondirgojection operatorsire

SU (n) adjoint rep: P, = IT=l_1-_17
———
= _1
> - -i>C 5
U(n) singlet: P, = T01_1p_ %} C

Now we can evaluate any number associated withSttién) adjoint rep, such as
its dimension and various casimirs.

Thedimension®f the two reps are computed by tracing the corresponding pro
jection operators (see secti6rb):

_ _ _Q_l _ba_lba
SU(n) adjoint: d; =tr P, = @ = O n@ = ;08 n5a6b

=n?-1

. 1
singlet: do =tr Py = —8 =
n
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To evaluatecasimirs we need to fix the overall normalization of the generafgrs
of SU(n). Our convention is to take

5ij :tI‘ETj :407 .

The value of the quadratic casimir for the defining rep is cota@ by substituting
the adjoint projection operator:

SU(n): Cpét = (T,T;)° _Q_:_@__l_(_

:n2—1 :”2_1517_

n a b n
In order to evaluate the quadratic casimir for the adjoipt ree need to replace the
structure constant®’;;;, by theirLie algebradefinition (see sectio#.5)

T,Tj — TyT,=iCi;¢Ty

[- X - Y

Tracing with7},, we can expressS;;;. in terms of the defining rep traces:
ZCUk =tr TT Ty) — tr T T,Ty)

0o

The adjoint quadratic casin¥;,,,C™™ is now evaluated by first eliminatin@; ;s
in favor of the defining rep:

n
m

The remaining’;;, can be unwound by the Lie algebra commutator:

00 o

We have already evaluated the quadratic casithb) (n the first term. The second
term we evaluate by substituting the adjoint projectionrafme

0T O

(LT T) = (T2)g (P, §(T))d = (T)a(Th)e — %(Ti)b(Tj)Z :

(2.6)

a (& a

The(T;)2(T})¢ term vanishes by the tracelessnesg,&f. This is a consequence of
the orthonormality of the two projection operatdts andPs in (2.5) (see 8.50):

O:P1P2:D—O CﬁtrTi:—O:O.
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Combining the above expressions we finally obtain

2.1 1
n + -] =2n.
n

Cy=2
n

The problem {.1) that started all this is evaluated the same way. First vagad¢he
adjoint quartic casimir to the defining casimirs:

Gyl

=@ e oo
0 000
0 @08
o TT={ Qe Ofe{) [+

The diagram1.1) is now reexpressed in terms of the defining rep casimirs:

0000
sl () wfrf O+

The first two terms are evaluated by inserting the adjoinprepection operators:

(LD 2 OO0
(21 (1) <)

3
_ 2
=1\|n _3+ﬁ —_—,

and the remaining terms have already been evaluated. Gofjeverything together,
we finally obtain

SU(n) : @ =2n%(n? +12)
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This example was unavoidably lengthy; the main point is thatevaluation is
performed by a substitution algorithm and is easily aut@tadny graph, no matter
how complicated, is eventually reduced to a polynomial &tés ofé¢ = n, i.e,
the dimension of the defining rep.

2.3 SECOND EXAMPLE: Eg FAMILY

What invariance group preserves norms of complex vectsmsedl as a symmetric
cubic invariant,

D(p,q,r) = d*paqvre = D(q,p,7) = D(p,7,q) ?
We analyze this case following the steps of the summary dicsez. 1:

i) Primitive invariant tensors
a a

S =a—>—b, dupe = /i\ , d™ = (dgpe)* = }\

b C b c

ii) Primitivenessd,.;d®/* must be proportional té¢, the only primitive 2-index
tensor. We use this to fix the overall normalizationigf.’s:

O

i) Invariant hermitian matricesVe shall construct here the adjoint rep projection
operator on the tensor product space of the defining rep ancoitjugate. All
invariant matrices on this space are

d—e—c d c d c
5505 = EEND S GO TG
a——1© a b a b

They are hermitian in the sense of being invariant under ¢exngonjugation and
transposition of indices (se8.¢1)). The crucial step in constructing this basis is the
primitiveness assumption: 4-leg diagrams containing $oae not primitive (see
section3.3).

The adjoint rep is always contained in the decompositioiel/ — V@V into
(inreducible reps, so the adjoint projection operator nimesexpressible in terms of
the 4-index invariant tensors listed above:

(Tl)g(T) A(éa(Sb + Boy 6d + Cdadedb

> =4 { +B ) C+C:}<}

iv) Invariance The cubic invariant tensor satisfies4)

A S Ao
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Contracting withd**, we obtain

Lo

Contracting nextwitti7;), we get an invariance condition on the adjoint projection

operator,

Substituting the adjoint projection operator yields thstfirelation between the
coefficients in its expansion:

O_(n+B+O)_(_+2{"@‘+B+O*+C+@‘}

2
O:B+C’+n;: .

v) The projection operatorshould be orthonormak , P, = P,0,.,. The adjoint
projection operator is orthogonal t8.6), the singlet projection operat@t,. This
yields the second relation on the coefficients:

0=P2P4

0:%} O—Czl—i—nB—i—C.

Finally, the overall normalization factor A is fixed B, P4 = P 4:

{_{){_A{Ho_g}{.

Combining the above three relations, we obtain the adjaiojeption operator for
the invariance group of a symmetric cubic invariant:

YCn T D Cem X} en

The correspondingharacteristic equationmentioned in the point iv) of the sum-
mary of sectiorR.], is given in (L8.10.
The dimension of the adjoint rep is obtained by tracing tleqmtion operator:

Nzéii:Q:@:nA(n—i—B—i—C):%.

This Diophantine conditions satisfied by a small family of invariance groups,
discussed in chapt&B The mostinteresting member of this family is the exceion
Lie groupEs, with n = 27 andN = 78.

The solution to problemi(1) requires further computation, but for exceptional
Lie groups the answer, given in tabie4, turns out to be surprisingly simple. The
part of the 4-loop that cannot be simplified by Lie algebra ipalations vanishes
identically for all exceptional Lie groups (see chapitéy.
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Chapter Three

Invariants and reducibility

Basic group-theoretic notions are introduced: groupsariants, tensors, the dia-
grammatic notation for invariant tensors.

The key results are the construction of projection opesdtom invariant matri-
ces, the Clebsch-Gordan coefficients rep of projectionaipes ¢.18), the invari-
ance conditions4.35 and the Lie algebra relationd.47).

The basic idea is simple: a hermitian matrix can be diagpedlilf this matrix
is an invariant matrix, it decomposes the reps of the grotp direct sums of
lower-dimensional reps. Most of computations to follow lement the spectral
decomposition

M:)\1P1+/\2P2+"'+/\rPr7

which associates with each distinct rogtof invariant matrixi a projection op-
erator 8.48:

M-\1
P, =]][—L.
i TN

The exposition given here in sectior&5-3.6 is taken from refs. {3, 74]. Who
wrote this down first | do not know, but | like Harter's expaait [155 156 157
best.

What follows is a bit dry, so we start with a motivational geiétom Hermann
Weyl on the “so-called first main theorem of invariant théory

“Allinvariants are expressible in terms of a finite number agthem We cannot
claim its validity for every grouy; rather, it will be our chief task to investigate for
each particular group whether a finite integrity basis exasnot; the answer, to be
sure, will turn out affirmative in the most important cases.”

3.1 PRELIMINARIES

In this section we define basic building blocks of the theorpé¢ developed here:
groups, vector spaces, algebras;. This material is covered in any introduction
to linear algebral35 211, 254 or group theory $25 153. Most of the material
reviewed here is probably known to the reader and can beabfiskipped on the
firstreading. Nevertheless, it seems that a refresher gaudeere, as an expert (more
so than a novice to group theory) tends to find the first exgasuhe diagrammatic
rewriting of elementary properties of linear vector spgcésptert) hard to digest.
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3.1.1 Groups
Definition. A set of elementg € G forms a group with respect to multiplication
GxG—gif

(a) the setislosedwith respect to multiplication; for any two elementd € G,
the productb € G;

(b) multiplication isassociative
(ab)c = a(be)
for any three elements b, c € G;
(c) there exists aidentityelemente € G such that
eg=ge foranygeG;

(d) foranyg € G there exists amverseg—! such that

g lg=g9 " =e.

If the group is finite, the number of elements is calleddiaer of the group and
denotedd|. If the multiplicationab = ba is commutative for alk, b € G, the group
is abelian

Definition. A subgroupH C G is a subset of that forms a group under multipli-
cation.e is always a subgroup; so ésitself.

3.1.2 Vector spaces

Definition. A setV of elementx, y, z, . . . is called avector(or linear) spaceover
a fieldF if

(a) vector addition“+” is defined in V' such thatV’ is an abelian group under
addition, with identity elemen;

(b) the set izlosedwith respect tascalar multiplicationand vector addition
a(x +y)=ax+ay, a,belF, xyeV
(a+b)x=ax + bx
a(bx) = (ab)x
1x=x, 0x=0.
Here the fieldF is eitherR, the field of reals numbers, @, the field of complex

numbers. Given a subsgf C V, the set of all linear combinations of elements of
Vo, or thespanof V4, is also a vector space.

Definition. A basis{e!,---,e"} is any linearly independent subset Bfwhose
span isV. n, the number of basis elements, is called diraensionof the vector
spaceV.
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In calculations to be undertaken a vectoe V' is often specified by the-tuple
(x1,--,xy) iINF", its coordinates = > e“x, in a given basis. We will rarely,
if ever, actually fix an explicit basige!, - - -, e™}, but thinking this way makes it
often easier to manipulate tensorial objects.

Repeated index summationThroughoutthis text, the repeated pairs of upper/lower
indices are always summed over

G lr, = Z G.lxy, (3.2)
b=1
unless explicitly stated otherwise.

Let GL(n,F) be the group of general linear transformations,
GL(n,F)={G :F" - TF"| det(G) # 0} . (3.2)

UnderGL(n,F) a basis set of is mapped into another basis set by multiplication
with a[n x n] matrix G with entries infF,

e/ a _ eb(G—l)ba )

As the vectorx is what it is, regardless of a particular choice of basis,enrtdis
transformation its coordinates must transform as

/ b
x, =G xp .

Definition. We shall refer to the set dh x n] matricesG as astandard repof
GL(n,F), and the space of all-tuples(x1, xs, ..., z,)!, x; € F on which these
matrices act as th&tandard representation spate

Under a general linear transformatiGhe GL(n,F), the row of basis vectors
transforms by right multiplication a8’ = e G~!, and the column of,’s trans-
forms by left multiplication ast’ = Gaz. Under left multiplication the column
(row transposed) of basis vectarstransforms ag’’ = G'e?, where thedual rep
Gt = (G~1)t is the transpose of the inverse Gf This observation motivates in-
troduction of adual representation spadé, the space on whict'L(n, F) acts via
the dual repa.

Definition. If V is a vector representation space, thendihal spacé/ is the set of
all linear forms onl” over the fieldF.

If {e!,---,e"} is a basis of//, thenV is spanned by thdual basis{f;, -, f,},
the set ofn linear formsf, such that

f,(e?) =7,
whered? is the Kronecker symbolf® = 1 if « = b, and zero otherwise. The

components of dual representation space vectors will reedéstinguished by upper
indices

WPy (3.3)
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They transform unde® L(n, F) as
Y =GNy (3.4)
ForG L(n, F) no complex conjugation isimplied by thaotation; thatinterpretation

applies only to unitary subgroups 6fL(n, C). G can be distinguished frodi' by
meticulously keeping track of the relative ordering of thdices,

G -G, (G =G, (3.5)

3.1.3 Algebra

Definition. A set ofr elements,, of a vector spacg forms an algebraif, in addition
to the vector addition and scalar multiplication,

(a) the setislosedwith respect to multiplicatioff - 7 — T, so that for any two
elementg,, ts € T, the product,, - tz also belongs tq™:

r—1
to tsg = Tag'ty, Tag? €C; (3.6)
v=0

(b) the multiplication operation idistributive
(ta +t6) by =ta -ty +t5-t,
to - (tg +t,)=to tg+ta t,.

The set of numbers, g™ are called thetructure constantsf the algebra. They form
a matrix rep of the algebra,

(ta)s” =Tap”, (3.7)
whose dimension is the dimension of the algebra itself.
Depending on what further assumptions one makes on thepiiedtion, one
obtains different types of algebras. For example, if thetiplidation is associative
(ta-tg) -ty =ta - (ts-ty),
the algebra ismssociative Typical examples of products are timatrix product

(ta - tp)s = (ta)a(tp)s,  ta €V OV, (3.8)
and thelLie product
(ta - ta)s = (ta)a(tp)s — (ta)o(ts)s, ta€V V. (3.9)

As a plethora of vector spaces, indices and dual spaces laogesin our imme-
diate future, it pays to streamline the notation now, by laiggout one vector space
as “defining” and indicating the dual vector space by raiselities.

The next two sections introduce the three key notions in onstuction of invar-
ince groupsdefining rep section3.2 (see also comments on pag®; invariants
section3.4; andprimitiveness assumptippage?21. Chapte# introduces diagram-
matic notation, the computational tool essential to undeding all computations
to come. As these concepts can be understood only in ref@tione another, not
singly, and an exposition of necessity progresses lingdudyreader is asked to be
patient, in the hope that the questions that naturally anm first reading will be
addressed in due course.
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3.2 DEFINING SPACE, TENSORS, REPS

Definition. In what followsV will always denote théefiningn-dimensional com-
plex vector representation space, that is to say the infeééémentary multiplet”
space within which we commence our deliberations. Along Wit defining vector
representation spadé comes thalual n-dimensional vector representation space
V. We shall denote the corresponding elemerit diy raising the index, as ir8(3),

so the components of defining space vectors, resp. dualrseat@ distinguished
by lower, resp. upper indices:

r=(x1,22,...,Tn), XEV

z=(z',2%...,2"), xe€V. (3.10)

Definition. LetG be a group of transformations acting linearlylénwith the action
of a group elemenry € G on a vector: € V given by anjn x n] matrix G

) =G, a,b=1,2,...,n. (3.11)
We shall refer ta&,* as thedefining repof the groupG. The action ofy € G on a
vectorg € V is given by thedual rep[n x n] matrix G':
' = 2P (G = Gt (3.12)
In the applications considered here, the gréupill almost always be assumed

to be a subgroup of thenitary group in which caseG—! = GT, and' indicates
hermitian conjugation:

(GNa" = (Gy")" =G4 (3.13)
Definition. A tensorz € VP @ V¢ transforms under the action gfc G as
= Gy e, (3.14)

where thel’? @ V9 tensor repof g € G is defined by the group acting on all indices
of x.

Gyl e d =GN G, G, Gy M Gy, P Gy, (3.15)

b1...bg ) Cp...C2C1
Tensors can be combined into other tensors by
(a) addition:
230 = w4 By, aBeC, (3.16)
(b) product:
200t = alys, (3.17)

(c) contraction:Setting an upper and a lower index equal and summing ovef all o
its values yields a tensere VP~ @ V4~1 without these indices:

be...d __ _abe...d ad __ _abc, d
e = 280 = xS, . (3.18)

e...af > e

A tensorz € VP ® V4 transforms linearly under the action gf so it can be
considered a vector in the= n?T4-dimensional vector spadé = V? @ V4. We
can replace the array of its indices by one collective index:

X = it 3.19
by.
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One could be more explicit and give a table like

11...1 21...1 nn...n
L1 =Ty 1 »T2=T1. 155 Xd=Tp. .n > (320)

but that is unnecessary, as we shall use the compact indatiarobnly as a short-
hand.

Definition. Hermitian conjugatioris effected by complex conjugation and index
transposition:

(h")ede = (h5a®)" . (3.21)

cde —
Complex conjugation interchanges upper and lower indae#) @3.10; transposi-
tion reverses their order. A matrix lermitianif its elements satisfy
(Mh¢ = M. (3.22)

For a hermitian matrix there is no need to keep track of thative ordering of
indices, as\/,* = (M), = M%,.

Definition. The tensor dual te,, defined by 8.19 has form
= glebr (3.23)

q---a20a71

Combined, the above definitions lead to the hermitian caatjog rule for collective
indices: a collective index is raised or lowered by intergfiag the upper and lower
indices and reversing their order:

- a1az...aq a bp...bl
a—{ blbp} “ _{aq...agal}' (324)
This transposition convention will be motivated furtherthg diagrammatic rules

of section4. L

The tensor rep3.15 can be treated as|dx d] matrix
G,° = Galgf,‘,‘.‘bl;q’gqp-.-.'.g?lcl ’ (3.25)
and the tensor transformatio®. {4 takes the usual matrix form
zl, =G s (3.26)

[e3

3.3 INVARIANTS

Definition. The vectol; € V' is aninvariant vectoiif for any transformatioy € G

q=0Gq. (3.27)
Definition. A tensorz € VP ® V1 is aninvariant tensoiif forany g € G
Ty 5 = G Gy Gy TGy (3.28)
We can state this more compactly by using the notatior3 &g
To = Golrs. (3.29)

Here we treat the tensof *’, " as a vectorifidxd]-dimensional space, = n”*1.
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If a bilinear formm/(z, y) = x%M,"y, is invariant for allg € G, the matrix
M.’ = G,°G®4M.¢ (3.30)
is aninvariant matrix Multiplying with G© and using the unitary conditioB (13,
we find that the invariant matriceemmutewith all transformationg € G:
[G,M] =0. (3.31)
If we wish to treat a tensor with equal number of upper and taweices as a
matrixM : VP @ VI = VP @ V4,

M,? =M Zi_‘f?g;“tf;;;;j;cl , (3.32)
then the invariance conditior829 will take the commutator form3(31). Our
convention of separating the two sets of indices by a comme,raversing the
order of the indices to the right of the comma, is motivatedh®sy diagrammatic
notation introduced below (seé.()).

Definition. We shall refer to an invariant relation betwegvectors inV andgq
vectors inV/, which can be written as a homogeneous polynomial in ternaeatbr
components, such as

h(z,y, 2,7, 5) = h cqeyyasriz®, (3.33)
as aninvariantin V¢ @ V? (repeated indices, as always, summed over). In this
example, the coefficients® ;. are components of invariant tengoe V3 ® V2,

obeying the invariance conditio.¢9.
Diagrammatic representation of tensors, such as

habcde = (334)

a b c de
makes it easier to distinguish different types of invarigntsors. We shall explain
in great detail our conventions for drawing tensors in secdi.1; sketching a few
simple examples should suffice for the time being.

The standard example of a defining vector space is our 3-diimeal Euclidean
spacelV = V is the space of all 3-component real vectois= 3), and exam-
ples of invariants are the lengiz, z) = ¢;;2,2; and the volumé/ (x,y, z) =
€12y, 2. We draw the corresponding invariant tensors as

iy =1 —1J, €ijr= /]\ : (3.35)

i j k

Definition. A composecéhvariant tensor can be written as a product and/or contrac-
tion of invariant tensors.

Examples of composed invariant tensors are
i m n

6ij€klm = | A\ ) Eijn*L(SmnEnkl - M . (336)

i k1l om i j ko
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The first example corresponds to a product of the two invésia(ez, y)V(z,r, s).
The second involves an indegntraction we can write this a¥'(z, y, d%)V(z, r,8).

In order to proceed, we need to distinguish the “primitive/driant tensors from
the infinity of composed invariants. We begin by defining adibiasis for invariant
tensors inl’? @ V4

Definition. A tree invariantcan be represented diagrammatically as a product of
invariant tensors involving no loops of index contractiong shall denote by’ =
{to,t1...t,—1} @ (maximal) set of- linearly independent tree invariants <

VP @ V4. As any linear combination af, can serve as a basis, we clearly have a
great deal of freedom in making informed choices for thedgesisors.

Example:Tensors 8.36) are tree invariants. The tensor
i

(3.37)

hijkl = €ims€inmC€krn€lisr =

with intermediate indicesn, n,r, s summed over, is not a tree invariant, as it
involves a loop.

Definition. An invariant tensor is called primitive invariant tensor if it cannot
be expressed as a linear combination of tree invariants oeetpfrom lower-rank
primitive invariant tensors. Leé® = {p1, pe, . . . P&} be the set of all primitives.
For example, the Kronecker delta and the Levi-Civita tel3&9 are the primi-
tive invariant tensors of our 3-dimensional space. The tamyraction 8.37) is not
a primitive, because by the Levi-Civita completeness iaha{5.29) it reduces to a
sum of tree contractions:
i | )
i |
= ) C + = 0ij0k + 0it0jk (3.38)
_ J k j—k
] k

(The Levi-Civita tensor is discussed in secti®f.)

Primitiveness assumptionAny invarianttensoh € V? @ V4 can be expressed
as a linear sum over the tree invariaits” V¢ @ V?:

h = Z h%, . (3.39)
acT

In contradistinction to arbitrary composite invariantgers, the number of tree
invariants for a fixed number of external indices is finiter &mample, given bilinear
and trilinear primitives? = {4,;, fi;x }, any invarianttensok € V? (here denoted
by a blob) must be expressible as

Q-+ =2 (3.40)
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;b\x

= +D) C (p=4)
+EX+FH+GI+HA’
—T) AN+ =5) (3.41)

3.3.1 Algebra of invariants

Any invariant tensor of matrix form3(32
M,P —M;fllai g dy...dy

Y Cq...C2C1
thatmapd/ ¢ ®@ VP — V9® VP can be expanded in the basis39. In this case the
basis tensors, are themselves matrices¥f @ V? — V7 ® VP, and the matrix
product of two basis elements is also an elemenfof VV'? — V¢ ® VP and can
be expanded in anelement basis:

tats = Y (Ta)s 'ty (3.42)
teT

As the number of tree invariants composed from the prinstisdinite, under matrix
multiplication the basets, form a finiter-dimensional algebra, with the coefficients
(1) 8" giving their multiplication table. As in3.7), the structure constants, )"
form a[rxr]-dimensional matrix rep df,, acting on the vectafe, t1, to, - - - t,—1).
Given a basis, we can evaluate the matriegs (1)3”, (12)37, - (7+—1)s” and
their eigenvalues. For at least one of combinations of theseices all eigenvalues
will be distinct (or we have failed to choose a good basisg piojection operator
technique of sectioB.5will enable us to exploit this fact to decompose Hfe 1P
space into- irreducible subspaces.

This can be said in another way; the choice of bdsig1,to - - - t,._1} is arbi-
trary, the only requirement being that the basis elememtéirmearly independent.
Finding a(7. ) g7 with all eigenvalues distinct is all we need to construct ehag-
onal basig{Py, Py, Po, - - - P,._1}, where the basis matric&; are the projection
operators, to be constructed below in secdn For an application of this algebra,
see sectio®.11

3.4 INVARIANCE GROUPS

So far we have defined invariant tensors as the tensorsamtarnder transforma-
tions of a given group. Now we proceed in reverse: given afsensors, what is
the group of transformations that leaves them invariant?



GroupTheory  version 9.0.1, April 8, 2011

INVARIANTS AND REDUCIBILITY 23

Given afull set of primitives%.33, P = {p1, p2, - - -, P& }, Meaning thato other
primitives exist, we wish to determine all possible tramsfations that preserve this
given set of invariant relations.

Definition. An invariance groufd is the set of all linear transformatioris 28 that
preserve the primitive invariant relations (and, by eximsll invariant relations)

D1 ((E, g) =P1 (vagGT)
pa(z,y, 2,...)=p2(Ge, Gy, Gz ...), .... (3.43)

Unitarity (3.13 guarantees that all contractions of primitive invariantgors, and
hence all composed tensadisc H, are also invariant under action 6f As we
assume unitary, it follows from (3.13 that the list of primitives must always
include the Kronecker delta.

Example 1If p°q, is the only invariant off
P g, =p"(G'G)qc = P, (3.44)

theng is the fullunitary groupU (n) (invariance group of the complex noim|? =
zPx,0;), whose elements satisfy

G'G=1. (3.45)

Example 2If we wish thez-direction to be invariant in our 3-dimensional space,
g = (0,0,1) is an invariant vector3.27), and the invariance group 3(2), the
group of all rotations in the-y plane.

Which rep is “defining”?

1. The defining spac®& need notcarry the lowest-dimensional rep 6f it is
merely the space in terms of which we chose to define the pvamiitvariants.

2. We shall always assume that the Kronecker d&ltis one of the primitive
invariantsj.e. thatg is a unitary group whose elements satisiy4§. This
restriction to unitary transformations is not essential jtsimplifies proofs of
full reducibility. The results, however, apply as well tetfnite-dimensional
reps of noncompact groups, such as the Lorentz g&a(3, 1).
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3.5 PROJECTION OPERATORS

For M, a hermitian matrix, there exists a diagonalizing unitaatnim C' such that

0 0
X2 0 ... 0
cMCT = 0 0 A 0 . (3.46)
0 D
; . X5 ...

Here\; # \; are ther distinct roots of the minimal characteristic polynomial
[T —x1)=o0 (3.47)
i=1

(the characteristic equations will be discussed in se@ién

In the matrixC(M — \21)CT the eigenvalues correspondingtgare replaced
by zeroes:

A1 — A2

A1 — A2
A1 — Ao

A3 — Ag
A3 — A2

and so on, so the product over all fact@hd — X\21)(IM — A31) ..., with exception
of the (M — A1) factor, has nonzero entries only in the subspace assodiétted
A1:

1 0 0
010 0
0 0 1
clII™M - x0T =] =) 0
Al Al 0
0 0

In this way, we can associate with each distinct rboa projection operato®;,

M=\l (3.48)

P'L' = )
N,

i
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which acts as identity on th&h subspace, and zero elsewhere. For example, the
projection operator onto the, subspace is

C. (3.49)
0
The matrice®; areorthogonal
PlP7 = 6ijpj , (no sum Om) , (350)
and satisfy theompleteness relation
> Pi=1. (3.51)

i=1
As tr(CP;CT) = tr P;, the dimension of théth subspace is given by
d; =trP;. (3.52)
It follows from the characteristic equatioB.47) and the form of the projection
operator 8.48 that)\,; is the eigenvalue dVI on P; subspace:
MP; = \;P; , (no sumon). (3.53)
Hence, any matrix polynomigl(M) takes the scalar valy& \;) on theP; subspace
fM)P; = f(\)P;. (3.54)

This, of course, is the reason why one wants to work with uo#ole reps: they
reduce matrices and “operators” to pure numbers.

3.6 SPECTRAL DECOMPOSITION

Suppose there exist several linearly independent invidiiani] hermitian matrices
M, My, ..., and that we have usédl; to decompose thé-dimensional vector
spacef/ = Y @ V;. CanMy, M3, ... be used to further decompo$&? This
is a standard problem of quantum mechanics (simultaneocseredibles), and the
answer is that further decomposition is possible if, ang dnthe invariant matrices
commute:

M, M,] =0, (3.55)

or, equivalently, if projection operatoi3; constructed froniVI, commute with
projection operatorP; constructed fromM

PP, =P,P,. (3.56)
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Usually the simplest choices of independent invariant imedrdo not commute.
In that case, the projection operat®sconstructed fronM; can be used to project
commuting pieces dV,:

M) = P,M,P;,  (nosum on).
ThatMgi) commutes withiVI; follows from the orthogonality oP;:

MY, My Z)\ MY P,]=0. (3.57)

Now the characteristic equation fMQ) (if nontrivial) can be used to decompose
V; subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(3.46 has more than one distinct eigenvalue; otherwise it is@ntignal to the unit
matrix and commutes trivially with all group elements. A repaid to berreducible
if all invariant matrices that can be constructed are pripoal to the unit matrix.

In particular, the primitiveness relatioB.@0 is a statement that the defining rep
is assumedreducible.

An invariant matrixM commutes with group transformatiofts, M| = 0, see
(3.31). Projection operators3(48 constructed fronM are polynomials ifVI, so
they also commute with all € G:

[G,Pi] =0 (3.58)

(remember thaP; are also invarianfd x d] matrices). Hence, @l x d| matrix rep
can be written as a direct sum [af; x d;] matrix reps:

G=1G1=) P,GP; =) P,GP, =) Gi. (3.59)
1,7 7 [
In the diagonalized reB(49, the matrixG has a block diagonal form:
Gy 0 O
cGel=| 0 G 0 G=3"C'GiC;. (3.60)
0 0 ,

The repG; acts only on thel;-dimensional subspadé consisting of vector®;q,

q € V. Inthisway an invariar(t/xd] hermitian matrixV with  distinct eigenvalues
induces a decomposition offadimensional vector spadéinto a direct sum ofl;-
dimensional vector subspacgs

VE viewe.. .oV, (3.61)

For a discussion of recursive reduction, consult appeAdikhe theory of class
algebras 55 156 157)] offers a more elegant and systematic way of constructing
the maximal set of commuting invariant matridel than the sketch offered in this
section.
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Diagrammatic notation

Some aspects of the representation theory of Lie groupkasreibject of this mono-
graph. However, it is not written in the conventional tensotation but instead in
terms of an equivalent diagrammatic notation. We shalftefthis style of carrying
out group-theoretic calculations bsdtracks(and so do reputable journalsl]).
The advantage of diagrammatic notation will become sefleaut, | hope. Two of
the principal benefits are that it eliminates “dummy indjtasd that it does not
force group-theoretic expressions into the 1-dimensitaredor format (both being
means whereby identical tensor expressions can be madekitol@lly different).
In contradistinction to some of the existing literaturehistmanuscript | strive to
keep the diagrammatic notation as simple and elegant agfmss

4.1 BIRDTRACKS

We shall often find it convenient to represent agglomeratimhinvariant tensors
by birdtracks, a group-theoretical version of Feynman i@diats. Tensors will be
represented byerticesand contractions bgropagators

Diagrammatic notation has several advantages over therteatation. Diagrams
do not require dummy indices, so explicit labeling of suadfliées is unnecessary.
More to the point, for a human eye itis easier to identify fogecally identical dia-
grams than to recognize equivalence between the corresppedsor expressions.

If readers find birdtrack notation abhorrent, they can sudekive all results of
this monograph in more conventional algebraic notationggive them a sense of
how that goes, we have covered our tracks by algebra in theatien of the £,
family, chapte20, where not a single birdtrack is drawn. It it is like speakitadjan
without moving hands, if you are into that kind of thing.

In the birdtrack notation, the Kronecker delta is a propagat

5 =b —e— a. (4.1)

For areal defining space there is no distinction betwdeandV/, or up and down
indices, and the lines do not carry arrows.

Any invariant tensor can be drawn as a generalized vertex:

d ——
Xo= X =1 X |. 4.2)
b =———
C =—>—

Whether the vertex is drawn as a box or a circle or a dot is aemaft taste.
The orientation of propagators and vertices in the planéeftirawing is likewise
irrelevant. The only rules are as follows:
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1. Arrows pointaway from the uppeindices andoward the loweindices; the
line flow is “downward,” from upper to lower indices:

a d
hed — }C{ . 4.3)
C

b

2. Diagrammatic notation must indicate which in (out) arroevresponds to
the first upper (lower) index of the tensor (unless the tersayclically
symmetric);

Here the leftmost
index is the first index

abed = % . (4.4)

a b c de

3. The indices are read in tlteunterclockwiserder around the vertex:

N
b
Co— X
Xbee =\ dee— : (4.5)
ef_
Order of readin

the indices

(The upper and the lower indices are read separately in theteclockwise
order; their relative ordering does not matter.)

In the examples of this section we index the external linegfereader’s conve-
nience, butindices can always be omitted. An internal limglies a summation over
corresponding indices, and for external lines the equntgdeints on each diagram
represent the same index in all terms of a diagrammatic exguat

Hermitian conjugation3.21) does two things:

1. It exchanges the upper and the lower indices,it reverses the directions of
the arrows.

2. ltreverses the order of the indices,, it transposes a diagram into its mirror
image. For exampleX T, the tensor conjugate td (), is drawn as

Xe=x4 =| x' lo—a, (4.6)

cba

..a2a1

XY = Xt Yo 5 = X — Y | (47)
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In sections3.1-3.2and here we define the hermitian conjugation &n@3 matrices
M: VP VI — VP ®V7inthe multi-index notation

D, —— ——0d,
b .5‘ ¢ id
a:—_)— M —)—_C: (48)
A=y ——C,

in such a way that the matrix multiplication

< V) V) V)

= M 559 N 55 = = MN S (4.9)

H - H
> > > >

and the trace of a matrix
C——

can be drawn in the plane. Notation in which all internaldiaee maximally crossed
at each multiplicationj19 is equally correct, but less pleasing to the eye.

4.2 CLEBSCH-GORDAN COEFFICIENTS

Consider the product

—_

1 C (4.11)

of the two terms in the diagonal representation of a prajeatiperator$.49. This

matrix has nonzero entries only in tHg rows of subspac#),. We collect them in

aldy x d] rectangular matrixC,)¢, o =1,2,...d, 0 = 1,2,...dx:

(Ca)i -~ (N

C\ = . dy - (4.12)
(CN)4,

d

The indexx in (Cy)g stands for all tensor indices associated withdhe n?+4-
dimensional tensor spad@xV 4. In the birdtrack notation these indices are explicit:

——

D T— =" 4.13

(C)\)C”aq...aga] =— ; H ( . )
——




GroupTheory  version 9.0.1, April 8, 2011

30 CHAPTER 4

Such rectangular arrays are calléktbsch-Gordan coefficienfeereafter referred
to asclebschedor short). They are explicit mappings — V. The conjugate
mappingV, — V is provided by the product

ot 1 , (4.14)

which defines th@lx d,| rectangular matrixC*)?, o = 1,2, ...d,0 = 1,2,...d:

(CMH ... eHP
C)\: . . d
| (CA)b
dx
b, ——
ajas...a b2 : Ao
(COp5 =" 5] e (4.15)

. ——
a; —>

The two rectangular Clebsch-Gordan matricgsandC), are related by hermitian
conjugation.

The tensors, which we have considered in secdidf transform as tensor prod-
ucts of the defining rep3(14). In general, tensors transform as tensor products of
various reps, with indices running over the correspondépgdimensions:

a1 =1,2,...,d;
ag = 1,2,...,d2
agriiodrta where (4.16)
ap+q = 1723-'-7dp+q-
The action of the transformatignon the indexay, is given by theldy x d] matrix
repGy.
Clebsches are notoriously index overpopulated, as thayineq rep label and
a tensor index for each rep in the tensor product. Diagrammatation alleviates
this index plague in either of two ways:

1. One can indicate a rep label on each line:

a, _‘_ﬁ S
Contv G0 — gy g S 3, (4.17)
A a, |
v
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(Anindex, if written, is written at the end of a line; a rep &dis written above
the line.)

2. One can draw the propagators (Kronecker deltas) forrdiftereps with dif-
ferent kinds of lines. For example, we shall usually drawatipint rep with
a thin line.

By the definition of clebsche8(49, the \ rep projection operator can be written
out in terms of Clebsch-Gordan matrig@3C\:

C*Cy=P,, (nosumon)
dy
(CN)r 5 (O s e ity = (P 50 oot (4.18)
: —— T F)>\
—_— > > >

A specific choice of clebsches is quite arbitrary. All relearoperties of projec-
tion operators (orthogonality, completeness, dimendityhare independent of the
explicit form of the diagonalization transformatiéh Any set ofC'y is acceptable
as long as it satisfies the orthogonality and completenasdittans. From 4.11)
and @.14) it follows thatC'y areorthonormal

C\CHF =051,
(CA) ?leazb ap(c,u)ap agaﬁa 5,6’5'u

4 LS N (4.19)

y - A A

>

Herel is the[d) x d,] unit matrix, andC’s are multiplied agd, x d] rectangular
matrices.
Thecompleteness relatiof3.57)

Y crCa=1, ([ x d] unit matrix),

3 (CM O (Cr)as o, = 501682 6y
A
A p—e— ——
Yo o =T (4.20)
A —— > ——
CAP, =dC*,
P \CH=46C",  (nosumon\,pu), (4.22)

follows immediately from 8.50 and @.19.
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4.3 ZERO- AND ONE-DIMENSIONAL SUBSPACES

If a projection operator projects onto a zero-dimensioobkpace, it must vanish
identically:

dy=0 = Py=""1 =< T =0. (4.22)

This follows from 3.49; d,, is the number of 1's on the diagonal on the right-hand
side. Ford, = 0 the right-hand side vanishes. The general foriPgfis

T
Py=Y My, (4.23)
k=1

whereM , are the invariant matrices used in construction of the ptojeperators,
and ¢, are numerical coefficients. Vanishing Bf, therefore implies a relation
among invariant matriced ;.

If a projection operator projects onto a 1-dimensional pabs, its expression, in
terms of the clebscheg (L8, involves no summation, so we can omit the interme-
diate line

h=l = =", - = (O, (G

Cp...C2C1 °

(4.24)
For any subgroup obU(n), the reps are unitary, with unit determinant. On the
1-dimensional spaces, the group acts trivially= 1. Hence, ifd, = 1, the clebsch
Cy in (4.24) is an invariant tensor i@ V41,

4.4 INFINITESIMAL TRANSFORMATIONS

A unitary transformatiord infinitesimally close to unity can be written as
Gl =02 +iDb, (4.25)

whereD is a hermitian matrix with small element£)®| < 1. The action ofy € G
on the conjugate space is given by

(G = G = 6% —iDf . (4.26)

D can be parametrized by < n? real parametersy, the maximal number of
independent parameters, is called direensiorof the group (also the dimension of
the Lie algebra, or the dimension of the adjoint rep).

In this monograph we shall consider only infinitesimal tfangations of form
G =1+1iD,|Dy| < 1. We do not study the entire group of invariances, but only the
transformations3.11) connected to the identity. For example, we shall not casid
invariances under coordinate reflections.

The generators of infinitesimal transformatioA2§ are hermitian matrices and
belong to theD? € V ®V space. However, not any element16fz V' generates
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an allowed transformation; indeed, one of the main objestof group theory is to
define the class of allowed transformations.

In section3.5we have described the decomposition of a tensor space - (i
ducible subspaces. As a particular case, consider the gesition ofV @ V. The
corresponding projection operators satisfy the compéstenelation4.20:

1
1:—T+PA+§ P,
n
A#£A

a Sc 1 a Sc a c a ¢
5d5b255b5d+ (Pa)p,a+ E (Pr)bsa
AEA

TR e

If 5% is the only primitive invariant tensor, thérn® V' decomposes into two sub-
spaces, and there are no otherirreducible reps. Howetlegré are further primitive
invarianttensorsy®V decomposes into more irreducible reps, indicated by the sum
over\. Examples will abound in what follows. The singlet projectbperatof’/n
always figures in this expansion,&s ¢ is always one of the invariant matrices (see
the example worked out in secti@?). Furthermore, the infinitesimal generators
D¢ must belong to at least one of the irreducible subspac&s:of .

This subspace is called tadjointspace, and its special role warrants introduction
of special notation. We shall refer to this vector space kgilel, in distinction to
the defining spac® of (3.10. We shall denote its dimension by, label its tensor
indices byi, j, k. . ., denote the corresponding Kronecker delta by a thin, $ttaig
line,

Sij=i ——— i, 4,j=1,2,....N, (4.28)

and the corresponding clebsches by

1 a
c “W:——E“:i—{: ab=12....n
(A)b \/a( )b b
i=1,2,....N.

MatricesT; are called thgeneratorf infinitesimal transformations. Hereis an
(uninteresting) overall normalization fixed by the orthoglity condition ¢.19:

(T3)(T5)h =tr(TiT) = ady;

The scale of; is not set, as any overall rescaling can be absorbed int@tinealiza-
tion a. For our purposes it will be most convenientto use 1 as the normalization
convention. Other normalizations are commonplace. Fangka,SU (2) Pauli ma-
tricesT; = %crl- andSU (n) Gell-Mann [L37] matricesT; = %)\i are conventionally
normalized by fixings = 1/2:

(4.29)

1
tr TlT = —61" . (430)
J 2 J
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The projector relation4.18 expresses the adjoint rep projection operators in terms
of the generators:

)i = @)= YA (431)

Clearly, the adjoint subspace is always included in the stu@7) (there must
exist some allowed infinitesimal generatdp$, or otherwise there is no group to
describe), but how do we determine the corresponding piojeoperator?

The adjoint projection operator is singled out by the regmient that the group
transformations do not affect the invariant quantitieerti®Rmber, the group the-
finedas the totality of all transformations that leave the irsats$ invariant.) For
every invariant tensog, the infinitesimal transformations = 1 + ¢D must sat-
isfy the invariance conditiorB(27). Parametrizing) as a projection of an arbitrary
hermitian matrix/ € V®V into the adjoint spacd) = P, H € V®V,

D= L(T)jer, = (L), (432)

we obtain thenvariance conditionwhich thegeneratorgnust satisfy: theynnihi-
late invariant tensors:

Tig=0. (4.33)

To state the invariance condition for an arbitrary invarigamsor, we need to
define the generators in the tensor reps. By substitufing 1 + ic - T + O(e?)
into (3.195 and keeping only the terms linear éinwe find that the generators of
infinitesimal transformations for tensor reps act by toanghone index at a time:

(a5, o, = (T)e 622 .%o ..

b1,,,bq ) Cp...C2C1 c1 7ca

a a a dg a1 sa ap dg
HOLH(TL)E2 . GGy o 6T 4+ O (T Syt 5y

C1 Cc2
— 686 oM Ty . .5;5; TR B L (Ti)l‘fj . (4.34)
This forest of indices vanishes in the birdtrack notatioral#ding us to visualize the

formula for the generators of infinitesimal transformasidor any tensor represen-
tation:

— l —— ¢ < <
—— T = < + — — , (4.35)
—— p—— > >

with a relative minus sign between lines flowing in oppositections. The reader
will recognize this as the Leibnitz rule.
Tensor reps of the generators decompose in the same waygastipaeps$.60:

T,=Y Ve,
A

A——

T ::;E A .

t 44

—_—
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The invariance conditions take a particularly suggestivenfin the diagrammatic
notation. Equation4.33 amounts to the insertion of a generator into all external
legs of the diagram corresponding to the invariant tepsor

(4.36)

The insertions on the lines going into the diagram carry aussign relative to the
insertions on the outgoing lines.

Clebsches are themselves invariant tensors. Multiplyath bides of .60 with
C', and using orthogonality}(19, we obtain

C\G =G\Cy\, (nosumom). (4.37)

The Clebsch-Gordan matriX) is a rectangulajd, x d] matrix, hencey € G acts
onitwith aldy x d,] rep from the left, and &l x d] rep from the right.$.48 is the
statement of invariance for rectangular matrices, analsg¢o 3.30), the statement
of invariance for square matrices:

Cr=Glona,
cCr=GTCAGy . (4.38)

The invariance condition for the clebsches is a specialaiggde39, the invariance
condition for any invariant tensor:

0=-TNCy + C,T;

—— —L <
A —— A —— A

0=-— Pt = P — :

—— —— ——

—— —— ——
A « 2 <

oo e T A (4.39)

—— Z

The orthogonality condition4(19 now yields the generators ikrep in terms of
the defining rep generators:

~

A A—

A A

YY
YY




GroupTheory  version 9.0.1, April 8, 2011

36 CHAPTER 4

AN
AN

4

Y

The reality of the adjoint rep. For hermitian generators, the adjoint rep is real, and
the upper and lower indices need not be distinguished; thepggator” needs no
arrow. For nonhermitian choices of generators, the adjejmis complex (“gluon”
lines carry arrows), butt andA are equivalent, as indices can be raised and lowered
by the Cartan-Killing form,

gij = tr(T]Ty) . (4.41)

The Cartan canonical basi3 = ¢, H; + e, E, + ¢, E_, is an example of a
nonhermitian choice. Here we shall always assumeTthate chosen hermitian.

4.5 LIE ALGEBRA

As the simplest example of computation of the generatonsfofitesimal transfor-
mations acting on spaces other than the defining space deortbie adjoint rep.
Using @.40 ontheV®V — A adjointrep clebscheg €., generator§’;), we obtain

J o . (4.42)

(To) i = (1) (Tw)2(Ty)i — (T2)5(Ty) (T -

Our convention is always to assume that the generdfpisave been chosen
hermitian. That means that in the expansion4.32 is real; A is a real vector
space, there is no distinction between upper and lowerésdend there is no need
for arrows on the adjoint rep lineg.28. However, the arrow on the adjoint rep
generator4.42 is necessary to define correctly the overall sign. If wertitange
the two legs, the right-hand side changes sign:

i - —A, (4.43)

(the generators for real reps are always antisymmetric)s difnow has no absolute
meaning; its direction idefinedoy (4.42). Actually, as the right-hand side of.42

is antisymmetric under interchange of any two legs, it isvemient to replace the
arrow in the vertex by a more symmetric symbol, such as a dot:

“00
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(T3)jr = —iCijre = — tx[1;, T3] T, (4.44)

and replace the adjoint rep generat@rs) ;. by the fully antisymmetric structure
constants$C;;;. The factori ensures their reality (in the case of hermitian generators
T;), and we keep track of the overall signs by always reading@stounterclock-

wisearound a vertex:
i

— iCijp = (4.45)

j k
* = J& (4.46)

As all other clebsches, the generators must satisfy theiamee conditions4.39:

CCC

Redrawing this a little and replacing the adjoint rep getwesg4.44 by the structure
constants, we find that the generators obeylibealgebracommutation relation

i i

- XY

TiT; — T;T; =1iCiji Ty, . (4.47)

In other words, the Lie algebra is simply a statement fhathe generators of in-
variance transformations, are themselves invariant tan$be invariance condition
for structure constants;;y, is likewise

Rewriting this with the dot-vertexi(44), we obtain

H_/X\:I. (4.48)

This is the Lie algebra commutator for the adjoint rep getoesa known as the
Jacobi relationfor the structure constants

CijmCrmikt — CijmCrmki = CimiCikm - (4.49)

Hence, the Jacobi relation is also an invariance statertteéattime the statement
that the structure constants are invariant tensors.

Sign convention for C;;;,. A word of caution about usingd(47): vertexC, ;i is
an oriented vertex. If the arrows are reversed (matfiGe; multiplied in reverse
order), the right-hand side acquires an overall minus sign.
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4.6 OTHER FORMS OF LIE ALGEBRA COMMUTATORS

In our calculations we shall never need explicit generateesshall instead use the
projection operators for the adjoint rep. For tethey have the form

PL)E, 5 = }C a,b=1,2,....n

a,B=1,...,dx. (4.50)

The invariance conditiord(36) for a projection operator is

Ll L e

Contracting with(T;)¢ and definingdy x d,] matrices(T¢)2 = (P)¢,5, we
obtain

(T3, Tl = (Pa)y, cTq — TE(P A, g

a bc d
KIJ\IJ_\;%J:W_\J%J. (4.52)
AL A LA A AN A A LA A A

This is a common way of stating the Lie algebra conditiondtiergenerators in an
arbitrary rep\. For example, fot/ (n) the adjoint projection operator is simply a unit
matrix (any hermitian matrix is a generator of unitary tf@ansation;cf. chapte),
and the right-hand side of (52 is given by

Un),SUn):  [T2,T] = 6¢T% — TE5% . (4.53)

For the orthogonal groups the generators of rotations digyammetric matrices,
and the adjoint projection operator antisymmetrizes gaonemdices:

2 _gbcTad + gdeac

Apart from the normalization convention, these are theliamiorentz group com-
mutation relations (we shall return to this in chapité).

1 _
SO(n):  [Tap, Ted) = _{ JacTba = JaaThe } : (4.54)

4.7 CLASSIFICATION OF LIE ALGEBRAS BY THEIR PRIMITIVE
INVARIANTS

There is a natural hierarchy to invariance groups, hinteith aections.2.1-3.6,
that can perhaps already be grasped at this stage. Suppdseeveonstructed the
invariance grou-, which preserves primitive8(39. Adding a new primitive, let
us say a quartic invariant, means that we have imposed a nestramt; only those
transformations of7; that also preserve the additional primitive constittite the
invariance group of—, /l\, X Hence G2 C G is a subgroup of7;. Suppose
now that you think that the primitiveness assumption is toorg), and that some
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quartic invariant, let us say3(37), cannotbe reduced to a sum of tree invariants
(3.4, i.e, itis of form

= >< + (rest of 3.41)),

where)( is a new primitive, not included in the original list of pritivies. By the
above argument only a subgro@ip of transformations i, preserve the additional
invariant,Gs C G. If G'3 does not exist (the invariant relations are so stringent tha
there remain no transformations that would leave them iaag); the maximal set
of primitives has been identified.

4.8 IRRELEVANCY OF CLEBSCHES

As was emphasized in sectidr?, an explicit choice of clebsches is highly arbitrary;
it corresponds to a particular coordinatization of thedimensional subspadé, .
For computational purposes clebsches are largely irreteMathing that a physicist
wants to compute depends on an explicit coordinatizationekample, in QCD the
physically interesting objects are color singlets, anctalor indices are summed
over: one needs only an expression for the projection opex#t.31), not for the
Cy’s separately.

Again, a nice example is the Lie algebra generdfor&xplicit matrices are often
constructed (Gell-Mann; matrices, Cartan’s canonical weights); however, in any
singlet they always appear summed over the adjoint repésdis in 4.31). The
summed combination of clebsches is just the adjoint regeptign operator, a very
simple object compared with explicit, matrices P 4 is typically a combination
of a few Kronecker deltas), and much simpler to use in expgicaluations. As we
shall show by many examples, all rep dimensions, casiretcs,are computable
once the projection operators for the reps involved are kndxplicit clebsches
are superfluous from the computational point of view; we hsert chiefly to state
general theorems without recourse to any explicit reatinat

However, if one has to compute noninvariant quantitiesh siscsubgroup embed
dings, explicit clebsches might be very useful. Gell-Mah#] invented\; matrices
in orderto embedU (2) of isospin intaSU (3) of the eightfold way. Cartan’s canon
ical form for generators, summarized by Dynkin labels offa(table7.6) is a very
powerful tool in the study of symmetry-breaking chaifs§ 126. The same can
be achieved with decomposition by invariant matrices (avanishing expectation
value for a direction in the defining space defines the littteig of transformations
in the remaining directions), but the tensorial technoliogiis context is underde-
veloped compared to the canonical methods. And, as Stedfiihrightly points
out, if you need to check your calculations against the isgditerature, keeping
track of phase conventions is a necessity.
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4.9 A BRIEF HISTORY OF BIRDTRACKS

Ich wollte nicht eine abstracte Logik in Formeln darstellen
sondern einen Inhalt durch geschriebene Zeichen in
genauerer und Ubersichtlicherer Weise zum Ausdruck brin-
gen, als es durch Worte mdglich ist.

— Gottlob Frege

Inthis monograph, conventional subjects — symmetric grbigalgebras (and, to a
lesser extent, continuous Lie groups) — are presented imawbat unconventional
way, in a flavor of diagrammatic notation that | refer to asrdhiacks.” Similar
diagrammatic notations have been invented many times dedod continue to be
invented within new research areas. The earliest publiskaihple of diagrammatic
notation as a language of computation, not a mere mnemonwicejeppears to
be F.L.G. Frege’s 187Begriffsschrift{127], at its time a revolution that laid the
foundation of modern logic. The idiosyncratic symbolismswet well received,
ridiculed as “incorporating ideas from Japanese.” Ruingddsts of typesetting,
Frege died a bitter man, preoccupied by a deep hatred of #reky of Catholics,
and of Jews.

According to Abdesselam and Chipalkatt],Janother precursor of diagrammatic
methods was the invariant theory discrete combinatoniatsires introduced by
Cayley [b(], Sylvester B27, and Clifford [61, 183, reintroduced in a modern,
diagrammatic notation by Olver and Shakiban’ 264.

In his 1841 fundamental paperq7 on the determinants today known as “Jaco-
bians,” Jacobi initiated the theory of irreps of the symneadroupS;,. Schur used
the S, irreps to develop the representation theory-df(n; C) in his 1901 disser-
tation [307], and already by 1903 the Young tableaGx§ 339 (discussed here in
chapte) came into use as a powerful tool for reduction of b§thandG L (n; C)
representations. In quantum theory the group of chdicé€][is the unitary group
U(n), rather than the general linear groGi.(n; C). Today this theory forms the
core of the representation theory of both discrete and goatis groups, described
in many excellent textbook&B8g 64, 350, 138 26, 11,317, 132,133 22§. Permu-
tations and their compositions lend themselves naturaiiijggrammatic represen-
tation developed here in chapt&rin his extension of th&/L(n; C) Schur theory
to representations agfO(n), R. Brauer B1] introduced diagrammatic notation for
d;; in order to represent “Brauer algebra” permutations, indemtractions, and
matrix multiplication diagrammatically, in the form dewpled here in chaptdrO.

His equation (39)
5 Do
//—:

(send index 1 to 2, 2 to 4, contract ingoirgy-(4), outgoing ( - 3)) is the earliest
published proto-birdtrack | know about.

R. Penrose’s papers are the first (known to me) to cast the grpusjection
operators into a diagrammatic form. In this monograph | i@ ®se diagrammatic
notation for symmetrization operatof&{1], Levi-Civita tensors 89, and “strand
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networks” 287. For several specific, few-index tensor examples, diagnatic
Young projection operators were constructed by Canningy Mandula 227, and
Stedman$19.

It is quite likely that since Sophus Lie’s days many have deddirdtracks
in private without publishing them, partially out of a sertfegravitas and in no
insignificant part because preparing these doodles foigatlins is even today a
painful thing. | have seen unpublished 1960s course notesafBelinfante, 19,
very much like the birdtracks drawn here in chapt®+3, and there are surely many
other such doodles lost in the mists of time. But, citing lergc?d, “the comfort
of the typesetter is certainly not tls@mmum bonurhand now that the typesetter
is gone, it is perhaps time to move on.

The methods used here come down to us along two distincgesane that can
be traced to Wigner, and the other to Feynman.

Wigner’s 1930s theory, elegantly presented in his grouprtheaonograph34 7],
is still the best book on what physics is to be extracted frgmraetries, be it
atomic, nuclear, statistical, many-body, or particle ptssall physical predictions
(“spectroscopic levels”) are expressed in terms of Wiggter*j coefficients, which
can be evaluated by means of recursive or combinatoriatitigus. As explained
here in chaptes, decomposition.8) of tensor products intoirreducible repsimplies
that any invariant number characterizing a physical systéima given symmetry
corresponds to one or several “vacuum bubbles,” trivalesgblgs (a graph in which
every vertex joins three links) with no external legs, susthase listed in tablg. L

Since the 1930s much of the group-theoretical work on ataanid nuclear
physics had focused on explicit construction of clebscloegife rotation group
SO(3) ~ SU(2). The first paper recasting Wigner's theory in graphical f@pa
pears to be a 1956 paper by I. B. Levinsan{, further developed in the influental
1960 monograph by A. P. Yutsis (later A. Jucys), |. Levinsod ®. Vanagasj59,
published in English in 1962 (see also ref<){, 33]). A recent contribution to this
tradition is the book by G. E. Stedma#l[9], which covers a broad range of appli-
cations, including the methods introduced in the 1984 wersf the present mono-
graph BZ). The pedagogical work of computer graphics pioneer J. RrBl25)],
who was inspired by Stedman’s book, also deserves mention.

The main drawback of such diagrammatic notations is lackafdardization,
especially in the case of clebsches. In addition, the diagratic notations designed
for atomic and nuclear spectroscopy are complicated bpwuagphase conventions.

R. P. Feynman went public with Feynman diagrams on my secitidiby, April
1, 1948, at the Pocono Conference. The idiosyncratic syistholGleick [L41]
describes it as “chicken-wire diagrams”) was not well reediby Bohr, Dirac,
and Teller, leaving Feynman a despondent mari,[308 237]. The first Feynman
diagram appeared in print in Dyson'’s articig)f; 309 on the equivalence of (at
that time) the still unpublished Feynman theory and theriks@f Schwinger and
Tomonaga.

If diagrammatic notation is to succeed, it need be not ordgise, but also beau-
tiful. Itis in this sense that this monograph belongs to thdition of R. P. Feynman,
whose sketches of the very first “Feynman diagrams” in hidéumental 1949 Q.E.D.
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paper [L19 309 are beautiful to behold. Similarly, R. Penrose’s], 287 way of
drawing symmetrizers and antisymmetrizers, adopted Inechapters, is imbued
with a very Penrose aesthetics, and even though the prit&d& land white, one
senses that he had drawn them in color.

In developing the “birdtrack” notation in 1975 | was insgirby Feynman di-
agrams and by the elegance of Penrose’s bingid]] | liked G. 't Hooft's 1974
double-line notation fot/(n) gluon group-theory weights.pd, and have intro-
duced analogous notation f8{7 (n), SO(n) andSp(n) in my 1976 paper{J]. In
an influential paper, M. Creuts§] has applied such notation to the evaluation of
SU (n) lattice gauge integrals (described here in cha@jtérhe challenge was to de-
velop diagrammatic notation for the exceptional Lie algsband | succeededd],
except forEg, which came later.

In the quantum groups literature, graphs composed of esrfc44) are called
trivalent The Jacobi relatior4(48 in diagrammatic form was first publishedd]
in 1976; though it seems surprising, | have not found it ingadier literature. This
set of diagrams has since been given the moniker “IHX” by Dr-Batan [L4].

In his Ph.D. thesis Bar-Natan has also renamed the Lie agebnmutator4.47)
the “STU relation,” by analogy to Mandelstam’s scatteringss-channel variables
(s, t,u), and the full antisymmetry of structure constarditsi¢) the “AS relation.”

So why call this “birdtracks” and not “Feynman diagrams”?%Tdifference is
that here diagrams are not a mnemonic device, an aid in gritown an integral
that is to be evaluated by other techniques. In our apptinafiexplicit construc-
tion of clebsches would be superfluous, and we need no phasertmns. Here
“birdtracks” are everything—unlike Feynman diagrams.ehaelt calculations are
carried out in terms of birdtracks, from start to finish. Ueéhind are blackboards
and pages of squiggles of the kind that m&genice Durand exclaim: “What are
these birdtracks!?” and thus give them the name.


http://theory1.hep.wisc.edu/~bdurand/
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Recouplings

Clebsches discussed in sectib project a tensor iV? @ V7 onto a subspack.
In practice one usually reduces a tensor step by step, dexsingpa 2-particle state
at each step. While there is some arbitrariness in the andenich these reductions
are carried out, the final result is invariant and highly alggany group-theoretical
invariant quantity can be expressed in terms of Wigner 3-Gandoefficients.

5.1 COUPLINGS AND RECOUPLINGS

We denote the clebsches forz v — A by

——
A , Py = —— (5.1)
——

——
\Y

Here \, u, v are rep labels, and the corresponding tensor indices apresged.
Furthermore, ifu andv are irreducible reps, the same clebsches can be used to
projecty ® A — v

u
A < A e
——

v

dy
P, = , (5.2)
andv @ A\ — i
u
d
P, =& . (5.3)
A

5 5
> >

A
Here the normalization factors come frd? = P condition. In order to draw the
projection operators in a more symmetric way, we repladesclees by 3-vertices:

u
A 1

= T \ .
\Y

In this definition one has to keep track of the ordering of ithed around the vertex.
If in some context the birdtracks look better with two leggeichanged, one can

U
(5.4)
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L_/{ - LQH< (5.5)

While all sensible clebsches are normalized by the orthoabty relation ¢.19),
in practice no two authors ever use the same normalizatio8-f@rtices (in other
guises known as 3-coefficients, Gell-Manm matrices, Cartan roots, Dirag
matricesgtc). For this reason we shall usually not fix the normalization

U
L, &
A(—C)—(EZCL)\—(—G, ay) = dv’ (56)
A

Vv

use Yutsis’s notationdc9:

leaving the reader the option of substituting his or herifd@choice (such as = %

if the 3-vertex stands for Gell-Man%v\i, etc).

To streamline the discussion, we shall drop the arrows arst afdhe rep labels
in the remainder of this chapter — they can always easily instated.

The above three projection operators now take a more syromhetm:

1 u
Py=—— )2
a) v
\Y
1
P,=— >
GM A
I~ v 20
P,=— . (5.7)
ay

u
In terms of 3-vertices, the completeness relatib2() is

d H
=y o> (5.8)
U
) @ v
\Y
Any tensor can be decomposed by successive applicatiofseoédmpleteness
relation:

u

T 1D C 11X}
I, P W ax) a
1 11 A
A v A S G

Hence, if we know clebsches for® 1 — v, we can also construct clebsches for
ARu®er®...— p. However, there is no unique way of building up the clebsghes
the above state can equally well be reduced by a differergloauscheme

= iii% (5.10)
—_— Ao ax ay Gy H . .
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Consider now a process in which a particle in the mapteracts with a particle
in the repr by exchanging a particle in the rep

o —p—H

w (5.11)

p——
The final particles are in repsando. To evaluate the contribution of this exchange
to the spectroscopic levels of ther particles system, we insert the Clebsch-Gordan
series b.8) twice, and eliminate one of the sums by the orthonormaditgtion 6.6):

—to
M g ‘“ >—<]>—< (5.12)
p—b— A

By assumptior\ is anirrep, so we have a recoupllng relation between theasgds
in “s” and “t channels”:
u

X oxger< o

We shall refert as 34 coefficients anc@ as 64 coefficients, and commit
ourselves to no part|cular normalization convention.

In atomic physics it is customary to abs@ into the 3-vertex and define a;3-
symbol [238 287, 347

(2 ¢ ?y):(—l)w\/:@ A_<. (5.14)

Herea = 1,2,...,d,, etc, are indices), p, v rep labels and the phase conven-
tion. Fixing a phase convention is a waste of time, as thegzh@ancel in summed-
over quantities. All the ugly square roots, one remembera fjuantum mechanics,

come from sticking, /e into 3-j symbols. Wigner$47] 6-j symbolsare related
to our 6+ coefficientdy

Y p
{ A pov } B (—1)~
w p o
[O00OXS
A p W p
The name3n-;j symbol comes from atomic physics, where a recoupling ire®Iv
3n angular momentgy, jo, .. ., j3, (See sectioi4.?).

Most of the textbook symmetries of and relations betweggay@nbols are obvious
from looking at the corresponding diagrams; others follaicgly from complete-
ness relations.

If we know the necessary 8s, we can compute the level splittings due to single
particle exchanges. In the next section we shall show that stfonger claim can
be made: given the 3- andjeoefficients, we can compuddl multiparticle matrix
elements.

(5.15)
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Vertex Self-energy
Skeletons insertions insertions

Total
number

12-j

O
D
& AD

B = oHed

B aDIIde>
& = =g
o HAD
Nyl

16

Table 5.1 Topologically distinct types of Wign&n-; coefficients, enumerated by drawing
all possible graphs, eliminating the topologically eqieva ones by hand. Lines
meeting in any 3-vertex correspond to any three irreducigeesentations with
a nonvanishing Clebsch-Gordan coefficient, so in geneesletlyraphs cannot be
reduced to simpler graphs by means of such as the Lie algéla and Jacobi
identity (4.49.

5.2 WIGNER 3n-5 COEFFICIENTS

An arbitrary higher-order contribution to a 2-particle $eeng process will give a
complicated matrix element. The corresponding energydeeeosssectionstc,

are expressed in terms of scalars obtained by contractitemabr indices; diagram-
matically they look like “vacuum bubbles,” withr internal lines. The topologically
distinct vacuum bubbles in low orders are given in tahle

In group-theoretic literature, these diagrams are caleg symbols, and are

studied in considerable detail. Fortunately, 8nyj symbol that contains as a sub-
diagram a loop with, let us say, seven vertices,
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can be expressed in terms@fj coefficients. Replace the dotted pair of vertices by
the cross-channel surf.(L3:

de@®@ . : , (5.16)

Now the loop has six vertices. Repeating the replacemettiéarext pair of vertices,
we obtain a loop of length five:

A

D @ >
6666

Repeating this process we can eliminate the loop altoggpheducing 5-vertex-
trees times bunches of geoefficients. In this way we have expressed the original
3n-j coefficients in terms 08(n-1)-j coefficients and-; coefficients. Repeating
the process for thg(n-1)-j coefficients, we eventually arrive at the result that

(Bn—j) = Z (products o@) . (5.18)

5.3 WIGNER-ECKART THEOREM

(5.17)

For concreteness, consider an arbitrary invariant tengarfour indices:

¥y oo
u &)
vV op

whereu, v, p andw are rep labels, and indices and line arrows are suppressad. N
insert repeatedly the completeness relat)(to obtain

AR E AR
=%

u/ﬂ\ (5.20)

[
@M
®|,_

Il
2
Y
Q

.
ng|’—‘
&~
4@
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In the last line we have used the orthonormality of projectiperators — as in
(5.13 or (5.23.

In this way any invariant tensor can be reduced to a sum ogbscheskinemat-
ics) weighted byreduced matrix elements

(T)a = s.J . (5.21)
a7

This theorem has many names, depending on how the indicggsarped. IfT" is
a vector, then only the 1-dimensional reps (singlets) dountie

singlet
T.= > ] (5.22)
A H
a
If T is a matrix, and the reps, i are irreducible, the theorem is call&thur’s

Lemma(for an irreducible rep an invariant matrix is either zeropooportional to
the unit matrix):

1
Tl ="~ H—“—d—@—L St - (5.23)
m

If T is an “invariant tensor operator,” then the theorem is dalfeWigner-Eckart

theorem[ 347, 107:
Ao A
o M ) - P
(E)a_a b= Z AU v
P
\L/

WA
== -<-< (5.24)
v
\2/

(assuming that appears only once ik ® i Kronecker product). If” has many in-
dices, as in our original examplg.(9, the theorem is ascribed to Yutsis, Levinson,
and Vanagasyb9. The content of all these theorems is that they reduce spect
scopic calculations to evaluation of “vacuum bubbles” educed matrix elements”
(5.20.

The rectangular matriceg” )¢ from (3.27 do not look very much like the
clebsches from the quantum mechanics textbooks; neitresr tthe Wigner-Eckart
theorem in its birdtrack versiorb(24). The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch far® \; — ) is written as

A
A lem,
m—(—@ = (A Ao Am| A miAgma) . (5.25)
mZ
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Representing thgly x d,] rep of a group element diagrammatically by a black
triangle,

D}, s (9) = m—4— ', (5.26)
we can write the Clebsch-Gordan serigsif) as
Le— A «
L{— N z/\: —<—>_‘_<—<—
DY L (9D, (9)=

Z <)\1m1)\2m2|/\1)\25\7h>D§wﬁ1 (g)<)\1)\2/~\ﬁl1|/\1m/1/\2m/2> .
X,

An “invariant tensor operator” can be written as

m
A
A
(Aama| T [ Am) = mzi*(;\:ml- (5.27)
1

In the bra-ket formalism, the Wigner-Eckart theore&sr2{) is written as
Mama|TA I m1) = (A Aama| AmAimy) T (A, M z) (5.28)

where the reduced matrix element is given by

1
T M) =—— Y (Andina[Adens) (Aena| T Ana)

dkz ni,m2,mn
A
1
= 5.29
- (5.29)
A

2

We do not find the bra-ket formalism convenientfor the grélgeretic calculations
that will be discussed here.
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Permutations

The simplest example of invariant tensors is the producksrohecker deltas. On
tensor spaces they represent index permutations. This igak in which the sym-
metric groupsS,, the group of permutations @fobjects, enters into the theory of
tensor reps. In this chapter, | introduce birdtracks notefor permutations, sym-
metrizations and antisymmetrizations and collect a fewlteghat will be useful
later on. These are the (anti)symmetrization expansianditas ¢.10 and 6.19),
Levi-Civita tensor relationsg(28 and 6.30, the characteristic equation8.$0),
and the invariance condition§.64) and 6.56). The theory of Young tableaux (or
plethysms) is developed in chapger

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operaaod we can represent it
by a[d x d] matrix:
00 = Oy e - (6.1)

7Cq...C2C1

As the covariant and contravariant indices have to be pehséparately, it is
sufficient to consider permutations of purely covarianstes.

For 2-index tensors, there are two permutations:

. . ——
identity: 1,5, = 6965 =

——
flip: o (12)0,°* = 0505 = > . (6.2)

For 3-index tensors, there are six permutations:

bsbab b1 b2 £b
3bab1 _ §b1 b2 §b3 ¢
1111112113’ _5a15a26a3 -
—_—
b3baby _ sbo by sbz ><
0(12)a1a2a3a _50,15(126(13 -

———
0(23) TN O013) = ><

0(123):527 0(132) — % (6.3)

Subscripts refer to the standard permutation cycles motalior the remainder of
this chapter we shall mostly omit the arrows on the Kronededa lines.
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The symmetric sum of all permutations,

ai -az az-ai

5 = %E:%{—+><+%+} (6.)

yields the symmetrization operat®rin birdtrack notation, a white bar drawn across
p lines will always denote symmetrization of the lines crasgefactor of1/p! has
been introduced in order fdf to satisfy the projection operator normalization

EE-TE

A subset of indices;, as, ... aq, ¢ < p can be symmetrized by symmetrization
matrix Si2.. 4

1
Suran..a, o b2l - {5b1 gb2 ”.521; 1 gbigbe “.521; T }

bp...bg...bab
(812...q)a1a2...aq...ap7 L R

1
= {5b15b2 o 80 g ghighe g 4 ...}53511...55;5

ai a2
q!

1
- 2
512...q=§Eq. (6.6)

Overall symmetrization also symmetrizes any subset otaxli

SS12..4=5

(6.7)

Any permutation has eigenvaliieon the symmetric tensor space:

cS=S8

EE

Diagrammatically this means that legs can be crossed andssed at will.
The definition 6.4) of the symmetrization operator as the sum ofpafpermuta-
tions is inconvenient for explicit calculations; a recuesilefinition is more useful:

1
bp...bab b bp...b b bp...b
Sauzz...apa PRl = — {5,& Saz...apa P2 +5a;Sa1a3...apv PR 4L }

S:

%E_

(1+0@1) +0@E21) + - -+ 0(p...321)) S23..p

(FEZEXE ) e

V= "B
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which involves onlyp terms. This equation says that if we start with the first index
we end up either with the first index, or the second index arehsd@ he remaining
indices are fully symmetric. Multiplying bysss . .. p from the left, we obtain an
even more compact recursion relation with two terms only:

%E = % <ﬂE +(p— 1)%) : (6.10)

As a simple application, consider computation of a conitbacdf a single pair of

indices:
" 1 O
1 p
p H
—1
Sapap,l...al ’bl...bp,lap = %Sap,l...al 7b1...bp71 . (611)

For a contraction irfp — k) pairs of indices, we have

_ (ntp- ! . (6.12)

pl(n+k—1)! kj:[
i :

The trace of the symmetrization operator yields the numbieid@pendent compo-
nents of fully symmetric tensors:

dstrS@ ””’1@ "+p1 . (6.13)
(n—

For example, for 2-index symmetric tensors,

ds =n(n+1)/2. (6.14)

6.2 ANTISYMMETRIZATION

The alternating sum of all permutations,

az-ai

_><+%_} (6.15)

1
Aa1a2map,bp---b2blzﬁ{5&52@...5 _gbaghe .53;+...}
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yields the antisymmetrization projection operatioin birdtrack notation, antisym-
metrization ofp lines will always be denoted by a black bar drawn across ttesli
As in the previous section

A’=A
=+
and in addition
SA=0

i

A transposition has eigenvaluel on the antisymmetric tensor space

3

(i 1+1)A_

s =

Diagrammatically this means that legs can be crossed anwssed at will, but
with a factor of—1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursifiaitien is often com-
putationally convenient

+ (F EF |
:%{EE_@_”ﬁ}' 6.19)

This is useful for computing contractions such as

o i? n-— p+1
2 T
1

n— p+1
aap 1. 1a bp—ra — D ap 1- 17 by . (620)

The number of independent components of fully antisymménsors is given by

n—p+1ln—p+2

da=trA = =
D p—1

=13

Tﬂ—m nzp
— (n—p)! ) (6.21)
0, n<p
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For example, for 2-index antisymmetric tensors the numbigdependent compo-
nents is

n(n—1) .
2

da = (6.22)

Tracing(p — k) pairs of indices yields

(6.23)

The antisymmetrization tensdr,, .. ,’»*?2%* has nonvanishing components, only
if all lower (or upper) indices differ from each other. If tdefining dimension is
smaller than the number of indices, the tenddras no nonvanishing components:

1
?EE —0 ifp>n. (6.24)
p

This identity implies that fop > n, not all combinations of Kronecker deltas are
linearly independent. A typical relation is the= n + 1 case

0= H = H - LH +u H - (6.25)
For example, fon = 2 we have
XXX X o

0=0/056e — 516c8 — o] 6269 + 51 6¢6e + 61 oca — 615567 .

bYa"c bYcYa

f e d

n=2: 0=

6.3 LEVI-CIVITA TENSOR

An antisymmetric tensor, with indices in defining dimension, has only one
independent component,( = 1 by (6.21)). The clebschesi(17) are in this case
proportional to the evi-Civita tensor

a1
al
(Ca)ayay..a, s =Céaras...an = %ﬂ , (6.27)

with e!?" = ¢, ,, = 1. This diagrammatic notation for the Levi-Civita tensor was
introduced by Penrosé §1]. The normalization factor§’ are physically irrelevant.
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They adjust the phase and the overall normalization in atttrthe Levi-Civita
tensors satisfy the projection operatérl(® and orthonormality4.19 conditions:

1
—— €ty b €T = Ay by b

N!
1 al1a a
ﬁealazmane 142 ":511 = 17 ﬁ =1. (628)

With our conventions,

Ap...A207

Z'n(nfl)/Q

l

The phase factor arises from the hermiticity conditiéri§) for clebsches (remem-
ber that indices are always read in the counterclockwiserawbund a diagram),

EE

7 €aras...anp — 1 €ay,...a2a1 -

Transposing the indices

(6.29)

— .. = (112

€aias...an, = “€asayi...an, — - =

yields ¢ = n(n — 1)/2. The factorl/v/n! is needed for the projection operator
normalization 8.50.
Givenn dimensions we cannot label more thaimdices, so Levi-Civita tensors

satisfy
= o

Ean,...a2a1 )

12 3n4d
For example, for
n=2: 0:+ﬁ_{,ﬁ+rh
0=0%pe — 0d€qe + 6%qp . (6.31)

This is actually the same as the completeness rela@idi8( as can be seen by
contracting 6.31) with ¢.; and using

1
6b

€ac€ =00 (6.32)

This relation is one of a series of relations obtained by remting indices in the
completeness relatio 28 and substituting®.23:

Ap...A%k ag...a aj...ap
€ap...apirby...b1 € " fr Ak lzk!(n_k)!Abk---bn oot
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(6.33)
Such identities are familiar from relativistic calculatgn = 4):
eabcdeagfe = 5;,7;16 5 Eabcdeabfe = 26,{;
Eabcdeabce = 652 P Eabcdeal)Cd =24 5 (634)
where the generalized Kronecker delta is defined by
1
SO, = Auagay (6.35)

6.4 DETERMINANTS

Consider arjn? x n?] matrix M,” defined by a direct product o x n] matrices
M?

Mo’ =Mayay...a, 70" = MO MP . MY

—— e ———

M:‘f_ M —‘-:—ﬁ—‘ﬁ (6.36)
—— —_——  ———
where
M! = e, (6.37)

The trace of the antisymmetric projection/of, ? is given by

try AM = Agpe..a, "Y' Mo MY, . ME

(6.38)

The subscripp on tr,(...) distinguishes the traces ¢n? x n?] matricesM
from the[n x n] matrix tracetr M. To derive a recursive evaluation rule foy, AN,

use 6.19 to obtain
—_—
1 @(1)@ (6.39)
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Iteration yields

i v el MP
€ € < e —
_ “D e O 4 .
@ }
{>
{> {>
{> {>

(6.40)
Contracting withM?, we obtain
tr, AM = (=1)F (trp_p AM) tr M*. (6.41)
p

k=1

This formula enables us to compute recursivelygllAM as polynomialsin traces
of powers ofM:

tro AM=1,  try AM = C) = tr M (6.42)

HOO-O)

1 2 2
trQA]\/fzi{(tr]W) —tr M?}

(6.43)
8O
; T e

trg AM = ; {(tr M)® = 3(tr M) (tr M?) + 2 tr M?} (6.44)

D QD O
ST

1
try AM = ol {(tr M)* = 6(txr M)? tr M?

+3(tr M?)? + 8 tr M3 tr M — 6 tr M*} . (6.45)
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Forp = n (M? are[n x n] matrices) the antisymmetrized trace is the determinant
det M = tr, AM = Ag,ay...a, """ Mg M2 My (6.46)
The coefficientsin the above expansions are simple continaumbers. Ageneral

term for (tr M%)t ... (tr M* ), with o; loops of lengtiYy, o, loops of length
/5 and so on, is divided by the number of ways in which this patteay be obtained:

070052 . L anlag! Ll (6.47)

6.5 CHARACTERISTIC EQUATIONS

We have noted that the dimension of the antisymmetric tesgace is zero for
n < p. This is rather obvious; antisymmetrization allows eadfeldo be used at
most once, and it is impossible to label more legs than theréahels. In terms of
the antisymmetrization operator this is given by the idgnti

A=0 if p>n. (6.48)
This trivial identity has an important consequence: it gméees that anjn x n|
matrix satisfies a characteristic (or Hamilton-Cayley ausar) equation. Take =
n + 1 and contract with\/® n index pairs ofA:
Acaras..an, P MM My =0
c d
<
<
<

) =0. (6.49)

We have already expanded this §140. Forp = n + 1 we obtain theharacteristic
equation

n

0=> (=1)*(trp_r AM)M", (6.50)
k=0
=M" — (tr M)M" ™ + (trg AM) M™% — ... 4+ (=1)" (det M) 1.

6.6 FULLY (ANTI)SYMMETRIC TENSORS

We shall denote a fullgymmetridensor by a small circle (white dot)

dabc...f = S I (651)
abc..d
A symmetric tensotl,pe...q = dpac...a = dach...a = - . . Satisfies
Sd=d

_r ‘ H (6.52)
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If this tensor is also an invarianttensor, the invarianaeltion (4.36 can be written

as
BB DS
:p{é (p = number of indices) (6.53)

Hence, the invariance condition for symmetric tensors is

0= . (6.54)

The fully antisymmetridensors withodd numbers of legs will be denoted by
black dots

fabc...d - B (655)

abc..d
with the invariance condition stated compactly as

0= . (6.56)

If the number of legs igven an antisymmetric tensor @nticyclic,

fabc...d = _fbc...da ) (657)
and the birdtrack notation must distinguish the first leg.l&ck dot is inadequate
for the purpose. A bar, as for the Levi-Civita tens6rX?), or a semicircle for the
symplectic invariantintroduced below ihZ.3, and fully skew-symmetric invariant
tensors investigated irn5.27%

fobe = m faboc = m (6.58)

or a similar notation fixes the problem.

6.7 IDENTICALLY VANISHING TENSORS

Noting that a given group-theoretic weight vanistiesnticallyis often an important
step in a birdtrack calculation. Some examples are

{X 0, {XEO, (6.59)
TA-

0, =0. (6.60)
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In graphtheory?68 294 the left graphin 6.59 is known as the Kuratowsky graph,
and the right graph ing;60 as the Peterson graph.

.H Eo 1 o, q —0,  (6.61)

%x
P

(6.62)

(6.63)

&
&

The above identities hold for any antisymmetric 3-indestenin particular, they
hold for the Lie algebra structure constait$;,. They are proven by mapping a
diagram into itself by index transpositions. For exampligiichange of the top and
bottom vertices in€.59 maps the diagram into itself, but with tiie 1) factor.
From the Lie algebrad(47) it also follows that for any irreducible rep we have

:% -0, /@:o. (6.64)
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Chapter Seven

Casimir operators

The construction of invariance groups, developed elsesvimethis monograph, is
self-contained, and none of the material covered in thiptehds necessary for
understanding the remainder of the monograph. We have @gwsections.2 that
all relevant group-theoretic numbers are given by vacuubblas (reduced matrix
elements3n-j coefficients,etc), and we have described the algorithms for their
evaluation. That is all that is really needed in application

However, one often wants to cross-check one’s calculatimingt the existing
literature. Inthis chapter we discuss why and how one intced casimirs (or Dynkin
indices), we construct independent Casimir operatorshferctassical groups and
finally we compile values of a few frequently used casimirs.

Our approach emphasizes the role of primitive invariantsanstructing reps
of Lie groups. Given a list of primitives, we present a sysdiémalgorithm for
constructing invariant matrice®/; and the associated projection operat&rg .

In the canonical, Cartan-Killing approach one faces a sdma¢wifferent prob-
lem. Instead of the primitives, one is given the generdfpexplicitly and no other
invariants. Hence, the invariant matrickg can be constructed only from contrac-

tions of generators; typical examples are matrices
o

My = LB M4_Ei, (7.1)

whereo, 1 could be any reps, reducible or irreducible. Such invanaatrices are
calledCasimir operators
What is a minimal set of Casimir operators, sufficient to mdany rep to its
irreducible subspaces? Such sets can be useful, as thesmamdngr Casimir
operators uniquely label each irreducible rep by theirmigluesi\, Ao, ... ;..
The invariance condition for any invariant matrix 31) is

0=[T), M] = <% - %
i

u
so all Casimir operators commute

MoMy = () % = ; () = MyM,, etc.,
m m

and, according to sectidh6, can be used to simultaneously decompose the.rep
If My, Ms, ... have been used in the construction of projection operaB#s)(
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any matrix polynomiaff (M, My . ..) takes valuef (A1, Az, .. .) on the irreducible
subspace projected iy, so polynomials inV/; induce no further decompositions.
Hence, it is sufficient to determine the finite numbefgfs that form a polynomial
basis for all Casimir operatorg.(l). Furthermore, as we show in the next section, itis
sufficient to restrict the consideration to the symmetrizagimirs. This observation
enables us to explicitly construct, in sectiérz, a set of independent casimirs for
each classical group.

Exceptional groups pose a more difficult challenge, pdytrakt here in a piece-
meal fashion in chapters on each of the exceptional grougrsa efinitive, sys-
tematic calculation of all casimirs for all simple Lie grajgonsult van Ritbergen,
Schellekens, and Vermaserev.

7.1 CASIMIRS AND LIE ALGEBRA

There is no general agreement on a unique definition of a Qasjperator. We
could choose to call the trace of a produckajenerators

tr(TiTy ... Tp) = - : (7.2)

a kth ordercasimir. With such definition,

tI‘(TjTi ce

would also be a casimir, independent of the first one. Howelldraces ofl’;’s that
differ by a permutation of indices are related by Lie algeb@ example,

- - . (7.3)

The lastterm involves g:-1)th order casimir and is antisymmetric in thg indices.
Only the fully symmetrized traces

1
h1gk = H Z tI‘(TiTj . Tk) = (7.4)

" perm

are not affected by the Lie algebra relations. Hence from aoywe shall use the
term “casimir” to denotesymmetrizedraces (ref. 249 follows the same usage,
for example). Any unsymmetrized tracgZ;7T; ... Ty,) can be expressed in terms
of the symmetrized traces. For example, using the symmegtoigp identity (see

figure9.1)
[IRTRTIIE 1, NS
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the Jacobi identity4.48 and thed;;;, definition ©.87), we can express the trace of
four generators in any rep of any semisimple Lie group in teofithe quartic and
cubic casimirs:

-SRI oo

In this way, an arbitraryth order trace can be written as a sum over tree contrac-
tions of casimirs. The symmetrized casimirs4j are conveniently manipulated as
monomial coefficients:

tI‘Xk :hlijCZIJSCm (77)
Forarep\, X isa[d) xd,] matrixX = z;T;, wherez; is an arbitraryV-dimensional
vector. We shall also use a birdtrack notati6r3():
i

X, = H—(—b—sza—l—. (7.8)

b

K2

The symmetrizationq.4) is automatic

tr XF = TiTi... T = xix; ... xk. (7.9)
D" Z; - Z j

ij---k 1gk

7.2 INDEPENDENT CASIMIRS

Not all tr X* are independent. For andimensional rep a typical relation relating
varioustr X* is the characteristic equatiof.50):

X" = (tr X)X" ! — (trg AX) X" 2 + ... £ (det X). (7.10)
Scalar coefficientsr;, AX are polynomials inr X, computed in sectiofi.4. The
characteristic equation enables us to express¥hy > n in terms of the matrix
powersX* k < n and the scalar coefficients X*, k < n. Therefore, if a group
has am-dimensional rep, it has at mastndependent casimirs,

P82

corresponding tor X, tr X2, tr X3, ... tr X ™.

For a simple Lie group, the number of independent casimiralisd therank of
the group and is always smaller tharthe dimension of the lowest-dimensional rep.
For example, for all simple groups7; = 0, the first casimir is always identically
zero. For this reason, the rank®& (n) isn — 1, and the independent casimirs are

000 O
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The defining reps a§O(n), Sp(n), G, Fy, E; andEs groups have an invertible
bilinear invariantg,;, either symmetric or skew-symmetric. Insertiffg= g.»g"
any place in atrace @éfgenerators, and moving the tenggy through the generators
by means of the invariance conditiot)(5, we can reverse the defining rep arrow:

Hence for the above groups, X * = 0 for k& odd, and all their casimirs are of even
order.

The odd and the even-dimensional orthogonal groups difféné orders of in-
dependent casimirs. Far= 2r + 1, there are independent casimirs

SO2r +1) : 9 @ Q (7.13)

Forn = 2r, a symmetric invariant can be formed by contracb'rrt@pfining reps
with a Levi-Civita tensor (the adjoint projection operatb®.13 is antisymmetric):

L) - (7.14)

tr X" is not independent, as b§.¢9, it is contained in the expansion 6f(z)?

(7.15)

Hence, the' independent casimirs for even-dimensional orthogonalgsare

SO(2r) : , e,
[TT]

: . (7.16)

I \
122-2) 1 2..rx

For Sp(2r) there are no special relations, and thendependent casimirs are
trX%,O <l <

Sp(2r) : 9 Q Q (7.17)

The characteristic equatior.(0, by means of Wh|ch we count the independent
casimirs, applies to the lowest-dimensional rep of the grand one might worry
that other reps might be characterized by further indepetrasesimirs. The answer
is no; all casimirs can be expressed in terms of the definiagher SU (n), Sp(n)
and.SO(n) tensor reps this is obvious from the explicit form of the gaters in
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A, 2,3, ...,r+1 ~ SU(r+1)
B, 2,4,6,..,2r ~ SO(2r+1)
C, 2,4,6, ..2r ~  Sp(2r)
D, 2,4, ..,2r—2r ~  SO(2r)
Gy 2,6
F, 2,6,8,12
Es 2,5,6,8,9, 12
E; 2,6, 8,10, 12, 14, 18
Es 2,8, 12, 14, 18, 20, 24, 30

Table 7.1 Betti numbers for the simple Lie groups.

higher reps (see sectidh4 and related results fafp(n) and SO(n)); they are
tensor products of the defining rep generators and Kronats{&as, and a higher
rep casimir always reduces to sums of the defining rep casitiites polynomials

in n (see examples of secti@n?).

For the exceptional groups, cubic and higher defining repriamts enter, and
the situation is not so trivial. We shall show below, by egplcomputation, that
tr X? = 0 for Es andtr X* = c(tr X2)? for all exceptional groups. We shall also
prove the reduction to thend- and6th-order casimirs fotz, in section16.4and
partially prove the reduction for other exceptional gromgsectionl 8.8 The orders
of all independent casimirs are knowst] 289, 134, 54] as the Betti numbers, listed
here in table7.1. There are too many papers on computation of casimirs to even
attempt a survey here; we recommend ref.5.

7.3 ADJOINT REP CASIMIRS

For simple Lie algebras the Cartan-Killing bilinear form41) is proportional to
i, SO by the argument of7(12) all adjoint rep casimirs are even. In addition, the
Jacobiidentity4.48 relates a loop to a symmetrized trace together with a sezef t
contractions of lower casimirs, linearly indepenent uragglications of the Jacobi
identity. For example, we have from.g)

-2

(7.18)

5 (TR

The numbers of linearly independent tree contractionsiacdsed in ref.{3].
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7.4 CASIMIR OPERATORS

Most physicists would not refer ter X* as a casimir. Casimir's4f] quadratic
operator and its generalizatiors3[] are[d,, x d,,] matrices:

A
(1)) = y =@ TN - T)b. (7.19)
12+p b
We have shown in sectidn 2 that all invariants are reducible & coefficients.

I,’s are particularly easy to express in term$¢t. Define
o —))\— B
Mg B = M a,f=1,...,dx, ab=1,2,....d,. (7.20)

b =
7ﬂ 2 —

Inserting the complete Clebsch-Gordan serte8)(for A ® u, we obtain
A A

an

A A A A A

VS RGHC S B om
T T P TR

The eigenvalues aff are Wigner'ssj coefficients $.19. Itis customary to express
theses;'s in terms of quadratic Casimir operators by using the ilarare condition

(4.40:
A
M H
p

Ch(p)—— = Ch(\)—— — 2 P O —2—. (7.22)

T
This is an ancient formula familiar from quantum mechangssiiooks: if the total
angular momentumig = L + S, thenL - § = £(J? — L? — 5?). In the present
case we trace both sides to obtain

1 A A 1
a4 =—51C2(p) = C2(X) = Ca(u)} - (7.23)

p
Thepth order casimir is thus’Hq

(Ip)a = (MP)5e

7i7’7‘educ. CQ([)) _ 02()\) _ CQ (,LL) P
- Xp: ( 2 ) _&Q,&

If 11 is anirreducible rep5.23 yields

IR A
P

S
=

=8

d
m
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and they rep eigenvalue of), is given by
_ _ p
2
14
Here the sum goes over @llC A ® u, wherep, A andy are irreducible reps.

Another definition of the generalized Casimir operatorhia $pirit of (7.4), uses

the fully symmetrized trace:
A
=1 = (NG Th)e (7.25)
[ ]
N
We shall return to this definition in the next section.

7.5 DYNKIN INDICES

As we have seen so far, there are many ways of defining casimipsactice it is
usually quicker to directly evaluate a given birdtrack dag than to relate it to
somebody’s “standard” casimirs. Still, it is good to havesatablished convention,
if for no other reason than to be able to cross-check one&itailon against the
tabulations available in the literature.

Usually a rep is specified by its dimension. If the group hasisd inequivalent
reps with the same dimensions, further numbers are neededduoely determine
the rep. Specifying thBynkin indexX 104,

0 = ® _ e (TT5) (7.26)
D

tI‘(OlCZ) ’

usually (but not always) does the job. A Dynkinindex is easMaluate by birdtrack
methods. By the Lie algebrd @7), the defining rep Dynkin index is related t@ a
coefficient:

ﬁlgafjv{@@}?;;@ (7.27)

The6y coeﬁicient@ = tr(T;1,T;T;) is evaluated by the usual birdtrack tricks.

For SU (n), for example

OB Q- om
n n

The Dynkin index of a rep in the Clebsch-Gordan series fdor 1 is related to
a6; coefficientby 7.23:

/1 A A
Co/dp = O fdr+ 0/ du + 255 — . (7.29)
P

p
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SU(n): :{}::i+>:<}+2{> (++><}
SO0 :(n_s>}ji+><+}<+) (+ X
<n+s>ﬁ+I+}<+) (v
o+

Sp(n):

SO(3):

SU(n): % = 2n%+6[@;%

SO(n): =(n—2_8) +3[QF%|
i

Sp(n): = (n+38) +3

Table 7.2 Top) Expansions of the adjoint rep quartic casimirs in termbsefiefining rep, and
(botton) reduction of adjoint quartic casimirs to the defining repudie casimirs,
for the classical simple Lie algebras. The normalizatio® is set toa = 1.

We shall usually evaluate Dynkin indices by this relatiomather convenient
formula for evaluation of Dynkin indices for semisimple gps is

_ tl“/\)(2
a traq X2 ’

with X defined in sectioB.7. An application of this formula is given in secti@n’.

The form of the Dynkin index is motivated by a few simple calesations. First,
we want an invariant number, so we trace all indices. Secaadwant a pure,
normalization independent number, so we take a rat{@:;C;) is the natural nor-
malization scale, as all groups have the adjoint rep. Furthee, unlike the Casimir
operators .19, which have single eigenvalugs(\) only for irreducible reps, the
Dynkin index is a pure number for both reducible and irredlecreps. [Exercise:
compute the Dynkin index fdv (n).]

The above criteria lead to the Dynkin index as the unique grtbeoretic scalar
corresponding to the quadratic Casimir operator. The ehofcgroup-theoretic
scalars corresponding to higher casimirs is rather morigranp Consider the re-
ductions ofl, for the adjoint reps, tabulated in tabe?. (The SU (n) was evaluated

Ox (7.30)
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as an introductory example, sectidr?. The remaining examples are evaluated by
inserting the appropriate adjoint projection operatoesivid below.)

Quartic casimirs contain quadratic bits, and in genergdaasions ofi(\)’s in
terms of the defining rep will contain lower-order casimirs.construct the “pure”
pth order casimirs, we introduce

M-8
1289 o
g
m%*C@Q+DQQQ7 etc.,

]
[TTTTI
and fix the constantd, B, C, ... by requiring that these casimirs avghogonal

@é:o, @gzo, (7.32)

Now we can define thgeneralizedr orthogonalDynkin indices P60, 295 by

D(O)(“):O = d,, D(z)(ﬂ) = @

1
p
D& (u):®7 o, DW(u) = 2@ : (7.33)
3~
where the thick line stands farrep. Here we have chosen normalizaticid; C;) =
1.

The generalized Dynkin indices are not particularly comeetor natural from the
computational point of view (see ref2§ for discussion of indices in “orthogonal
basis”) but they do have some nice properties. For examplaéashall show later
on), the exceptional groups X* = C(tr X2)? are singled out byp®* = 0.

If 1 is a Kronecker product of two repg, = A ® p, the generalized Dynkin

indices satisfy
O, 0.0,,0,0

D® () =DP (\)d, + drD® (p) > 0, (7.34)
as the cross terms vanish by the orthonormality conditi@r®. Substituting the
completeness relatio (7), A ® p = > o, we obtain a family osum rulefor the
generalized Dynkin indices:

Z@ =" DW(g) = DV (\)d, + dy D) (p). (7.35)
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Forp = 2 thisis a\ ® p = >_ o sum rule for Dynkin indicesq.29
Undy +drtly, =Y L, (7.36)

useful in checking Clebsch-Gordan decompositions.

7.6 QUADRATIC, CUBIC CASIMIRS

As the low-order Casimir operators appear so often in plysiés useful to list
them and their relations.
Given two generator$;, T; in [nxn] rep ), there are only two ways to form a

loop:
{}, L

If the A rep is irreducible, we defin€r casimir as

LN o —

(T;T;), =Cpdl. (7.37)
If the adjoint rep is irreducible, we define

J J

Usually we take\ to be the defining rep and fix the overall normalization byrgki
a = 1. For the adjoint rep (dimensiaN), we use notation

ﬁ@ﬁ = CireCire = Cy L (7.39)

Existence of the quadratic Casimir operatdy is a necessary and sufficient condi-
tion that the Lie algebra is semisimplel] 104, 274]. For compact group§'sa > 0.
CFr,a,C4, and/, the Dynkin index 7.28, are related by tracing the above expres-
sions:

@ — nCp = Na= NCaL. (7.40)

While the Dynkin index is normalization independent, on€'ef a or C'4 has to
be fixed by a convention. The cubic invariants formed ffBys andC;;;.'s are (all
but one) reducible to the quadratic Casimir operators:

‘é.._ <% - %) J_ (7.41)
* _Ca { (7.42)

2
Ca
Il T/l\. (7.43)
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This follows from the Lie algebrai(47)

The one exception is the symmetrized third-order casimir

%dijk_kzi{ﬁJrﬁ}. (7.44)

By (7.12 this vanishes for all groups whose defining rep is not comlbat leaves
behind onlySU (n),n > 3 andEg. As we shall show in sectiob8.6 d;;;, = 0 for
Eg, so onlySU (n) groups have nonvanishing cubic casimirs.

7.7 QUARTIC CASIMIRS

There is no unique definition of a quartic casimir. Any grdbperetic weight that
contains a trace of four generators

}::i (7.45)

can be called guartic casimir For example, a 4-loop contribution to thsC'D 3

function

contains two quartic casimirs. This weight cannot be exgygéss a function of
guadratic casimirs and has to be computed separately farrepand each group.
For example, such quartic casimirs need to be evaluatetiéguurpose of classifi-
cation of grand unified theorieg$, weak coupling expansions in lattice gauge
theories B0] and the classification of reps of simple Lie algebras/].

Not every birdtrack diagram that contains a trace of fouregators is a genuine

quartic casimir. For example,
m (7.47)
1
O .49

and equal%acﬁ forasimple Lie algebra. However, if all loops contain foartices
or more, Lie algebra cannot be used to reduce the diagranex@onple,

is reducible by .42 to



1 1 1 1 1
N N N N N

2 2n”(n’+36 2
U(n) n? nts 2n2(n? +12) (20 T
43,213 4_6n2+18 2/.2 2n2(n?436 2n%—3

SU(TL) n ng + n 6;12+ n (n + 12) ( 5 ) n3n
SO(n) n2—3n44 n2_nt4 (n—2)(n®—9n?+54n—104) (n—2)(n®—15n%+138n—296) 2n—1

n 3 24 ] 21 6
Sp(n) n243n44 n24n+4 (n+2) (n®*+9n°454n+104) (n+2)(n®+15n24+138n4296) 2n+1

p S 24 8 21 6

5 1 164 100 4

G2(7) 3 3 =R =R 3

7 1 79 25 3

F4(26) g § El 5 2

41 5 20 20

Eg(27) o7 27 28 3 El

53 5 320 15

E7(56) 1 64 8 81 )

11 1 11 1 5

B3 (248) 120 20 120 ™0 8

Table 7.3 Various quartic casimirs for all simple Lie alggehrThe normalization ir/(38) is set toa = 1.

Aloayldnoio

TTOZ ‘8 Udy ‘T°0’6 UOISIDA
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2
I
€

2_4y(n2—
24\ (n—
SO(n): RGN n—8
n— n2_ n
Sp(n): ( 214)((n2+3)+(4)+3) n+8

Normalization: =

Table 7.4 Quartic Dynkin indices/ (33 for the defining and the adjoint reps of classical
groups. For the exceptional groups the quartic Dynkin ieslicanish identically.

The second diagram on the right-hand side is reducible,Hmufitst one is not.
Hence, at least one quartic casimir from a family of quardisimirs related by Lie
algebra has to be evaluated directly. For the classicalpg;ahis is a straightfor-
ward application of the birdtrack reduction algorithmst Ewample, forSU (n) we
worked this out in sectiofl.2

The results for the defining and adjoint reps of all simpledrieups are listed in
table7.3 In table7.4we have used the results of talil to compute the quartic
Dynkin indices {.33. These computations were carried out by the methods that
will be developed in the remainder of this monograph.

7.8 SUNDRY RELATIONS BETWEEN QUARTIC CASIMIRS

In evaluations of group theory weights, the following retilic of a 2-adjoint, 2-
defining indices quartic casimir is often very convenient:

M a4 4 %:ﬁ : (7.50)

where the constant4 and B are listed in tablg.5.
For the exceptional groups, the calculation of quarticroasiis very simple. As
mentioned above, the exceptional groups have no genuing@easimirs, as

tr X* =b(tr X?)?

_b%. (7.51)
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CHAPTER 7
The constant is fixed by contracting W@ U :
3 1 3 N 1Cy
h=—— =< ([ _-XZ2) .
N(N +2) a? N(N+2)\n 6 a
Hence, for the exceptional groups
1 3 1 3a* (N Ca\’
— = — = — - 7.52
N% N+2<N ) N+2(n Ga) - (792)
1 4 25
— =Ch—— 7.53
N@ CA12(N+2)’ (7.53)
1 . N+27
N% A12(N +2)° (7.54)

Here the third relation follows from the second by the Liechlg.

To facilitate such computations, we list a selection ofﬁeh's between various
quartic casimirs (using normahzatl

The cubic casim| is nonvanishing only fo6U (n),n > 3.

NCA
% - 2A (7.57)
a

Rere as
\ ) )
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v O X
SU(n) | n? -1 2n —1 { —a? -
SO(n) @ (n—2) 3 { —% ~ —szi%
n(n | a2 U
Sp(n) % (n+2) z ‘ —% —a
G (7) 14 4 0 S ~ +%E
—_—
>\
Fy(26) | 52 3 1 { 5 4
Es(27) 78 4— ‘ —a N +a E
E(56) | 133 33— z ‘ _;_z -/ +%@E

Table 7.5 The dimensiolV of the adjoint rep, the quadratic casimir of the adjoint t&p,
the vertex casimiilC,, and the quartic casimir7(50 for the defining rep of all
simple Lie algebras.
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A, &3 5L SU(n + 1)
B, =& R SO(2n +1)
C, C I S e , Sp(2n)
D, 23 %n C So@n)
n
Gy =
F, 123 4

1 2 3 4 56

Eg
1 2 3 45 6 °

Table 7.6 Dynkin diagrams for the simple Lie groups.

1 1 N Cy
— —— S 7.59
a?N 3a( Cr+Cv) n  6a ( )
1 5,
< =204 (7.60)
1 1, 9

7.9 DYNKIN LABELS

“Why are they called Dynkin diagrams?"

H. S. M. Coxeter 7]
It is standard to identify a rep of a simple group of ranky its Dynkin labels,
a set ofr integers(ajas . .. a,) assigned to the simple roots of the group by the
Dynkin diagrams. The Dynkin diagrams (tables) are the most concise summary
of the Cartan-Killing construction of semisimple Lie algab. We list them here
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only to facilitate the identification of the reps and do né¢atpt to derive or explain
them. In this monograph, we emphasize the tensorial teaksifpr constructing
irreps. Dynkin’s canonical construction is described ifsr§313 126. However,
in order to help the reader connect the two approaches, Wetaii€ the correspon-
dence between the tensor reps (identified by the Young takj@ad the canonical
reps (identified by the Dynkin labels) for each group segdyain the appropriate
chapters.
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Chapter Eight

Group integrals

In this chapter we discuss evaluation of group integral®ohf
/dg G G ... GGy, (8.1)

whereG," is a[n x n] defining matrix rep ofy € G, G' is the matrix rep of the
action ofg on the conjugate vector space, which we write agit3),

G% = (G)",
and the integration is over the entire rangeyofAs always, we assume thgtis
a compact Lie group, an@,’ is unitary. Such integrals are of import for certain
qguantum field theory calculations, and the chapter shouwdaisly be skipped by
a reader not interested in such applications. The integra) {s defined by two
requirements:
1. Normalization:

/ dg—1. (8.2)

2. The action ofy € G is to rotate a vectar,, into 2/, = G,bzy:

— Y =
Surface traced out by action o

for all possible group element

The averaging smeaisin all directions, hence the second integration rule,
/dg G, =0, G isanontrivialrep ofg, (8.3)

simply states that the average of a vector is zero.

A rep is trivial if G = 1 for all group elementg. In this case no averaging is
taking place, and the first integration ruk2 ) applies.

What happens if we average a pair of vectorg? There is no reason why a pair
should average to zero; for example, we know thét = > z,z = z,2 is
invariant, so it cannot have a vanishing average. Thergifogeneral,

/dg G.’Gey #0. (8.4)
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8.1 GROUP INTEGRALS FOR ARBITRARY REPS

To get a feeling of what the right-hand side 8t4) looks like, let us work out an
SU(n) example.

LetG,.b be the definingnxn] matrix rep ofSU (n). The defining rep is nontrivial,
soitaverages to zero b§.Q. The first nonvanishing average involv&§ the matrix
rep of the action ofy on the conjugate vector space. As we shall soon have to face
a lot of indices, we immediately resort to birdtracks. In bieltracks notation of
sectiord.1,

Gl —a——t—b, (% =a—>>—f—b. (8.5)

For G the arrows and the triangle point the same way, whileZbtthey point the
opposite way. Unitarity>TG = 1 is given by

In this notation, theZ G integral to be evaluated is
a —<«—}—«d
/dg . (8.7)
b >—f——c

As in the SU(n) example of sectioR.2, theV ® V tensors decompose into the
singlet and the adjoint rep

—_——

— 1
-~ 2+ O 8.8)
glot = Lebsd 4+ L(m)b(m)l.

We multiply (8.7) with the above decomposition of the identity. The unitaréiation
(8.7) eliminates G's from the singlet:

i :%) C+$C 8.9)

The generatorg; are invariant (see4(47):

’

(T1)§ = G Gy G (Ti) 3 (8.10)
whereG;; is the adjoin{ N x N| matrix rep ofg € G. Multiplying by (G1);;, we

obtain
j} = % (8.11)

Hence, the pai€G'' in the defining rep can be traded in for a singlén the adjoint

rep,
:%} C+ O (8.12)

The adjoint refg7;; is nontrivial, so it gets averaged to zero Byd). Only the singlet
survives:

/ dg G, Gt .= %5553

/dg } :é}(. (8.13)
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Now let G be any[d x d] irrep of a compact semisimple Lie group. Irreducibility
means that anyd x d] invariant tensorAy is proportional todg (otherwise one
could useA to construct projection operators of secti®rb and decompose the
d-dimensional rep). As the only bilinear invariantis, the Clebsch-Gordan

d} C . noninglcts D:C (814)

series contains one and only one singlet. Only the singlefvas the group av-
eraging, and&.13 is true for any[d x d] irreducible rep (withn — d). If we
take G, andG™ ;¢ in inequivalent reps\, .. (there is no matrix<” such that
G = KGWEK~'forall g € G), then there is no way of forming a singlet, and

/dg GNV G Pa=0 i N#£p. (8.15)

What happens i+ is a reducible rep? In the compact index notation of se&i@n
the group integral&.1) that we want to evaluate is given by

/dg G.”. (8.16)
A reducible rep can be expanded in a Clebsch-Gordan sérigq (

/dgG: ZC’;/dgGAC’,\. (8.17)
A

By the second integration rul&.Q), all nonsinglet reps average to zero, and one is
left with a sum over singlet projection operators:

/dgG: doclan= > P, (8.18)
singlets singlets

Group integration amounts to projecting out all singleta given Kronecker prod-
uct. We now flesh out the logic that led .18 with a few details. For concreteness,
consider the Clebsch-Gordan serigs3(for . x ¥ = 3 A. Each clebsch

(Cr)ge' = :}5— i (8.19)

is an invariant tensor (seé.G9):

CvacZ G G GZ a c’i

D-<- 2)-»« (8.20)

Multiplying with G from right, we obtain the rule for the “propagation” of

through the “vertexC:
H D A H j:D A
v v

Cac’ Gt =Go” G Coror . (8.21)
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In this way,G(*) G(*) can be written as a Clebsch-Gordan series, each term with a

single matrixG®) (see 6.9)):
n n
dx A
o= [0Y Gn D

= (CMap'(Cr); / dg GW,7 . (8.22)

Clebsches are invariant tensors, so they are untoucheahbp grtegration. Integral
overG @™ reduces to clebsches times integrals:

/dgG(A)ij :{ 1forAsinglet (8.23)

0 for A nonsinglet
Nontrivial reps average to zero, yielding.{8. We have gone into considerable
detail in deriving 8.22 in order to motivate the sum-over-the-singlets projectio
operators rule§.18. Clebsches were used in the above derivations for purely pe
agogical reasons; all that is actually needed are the sipgigection operators.

8.2 CHARACTERS

Physics calculations (such as lattice gauge theoriesh aftelve group-invariant
quantities formed by contractirfg with invariant tensors. Such invariants are of the
form tr(hG) = hy®G,b, whereh stands for any invariant tensor. The trace of an
irreducible[d x d] matrix rep) of g is called thecharacterof the rep:

xalg) = trGN = g™ o (8.24)
The character of the conjugate rep is
XMg) = tr GV =GN, =y (g)" (8.25)

Contracting 8.14) with two arbitrary invarianfd x d] tensorsh,® and(f1),¢, we
obtain thecharacter orthonormality relation

/ dg x(hg)x 6“—xk<hff> (8.26)

reps

@ ( A irreducible) _
@

The character orthonormality tells us that if two groupainant quantities share a
GGT pair, the group averaging sews them into a single groupri@vequantity. The
replacement of,,* by the charactey, (h'g) does not mean that any of the tensor
index structure is lost&,* can be recovered by differentiating
d

Ga" = o (hlg). (8.27)
The birdtracks and the characters are two equivalent woafor evaluating group
integrals.
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8.3 EXAMPLES OF GROUP INTEGRALS

We will illustrate @.18 by two examplesSU (n) integrals ovetz G andGGGTGT.
A product of twoG’s is drawn as

a—<}—b
GG = . (8.28)
¢ —}—d

G’s are acting orw V2 tensor space, which is decomposable ®yi)(into the sym-
metric and the antisymmetric subspace

6b5d_( )ac’ (PA ac7

. - :}«C (8.29)

1
(Py),0 % 5(5b5fi+5d§b)
:}?{::% + X } (8.30)
(Pa),, » %(5b5d+5d5b)
A 1 [—e—
KT X
dszw, dA:"("T_l). (8.31)

The transposition of indicdsandd is explained in sectiod.]; it ensures a simple
correspondence between tensors and birdtracks.

For SU(2) the antisymmetric subspace has dimensgign= 1. We shall return
to this case in sectioh5.1 Forn > 3, both subspaces are nonsinglets, and by the
second integration rule,

SU(n) : /dg G.bG.A =0, n>2. (8.32)

As the second example, consider the group integral &G GT. This rep

acts onV? ® 7 tensor space. There are various ways of constructing tlgéesin
projectors; we shall give two.

We can treat th&2 ®72 space as a Kronecker product of spagés and®72.
We first reduce the particle and antiparticle spaces sepwatat (8.29:

S—_ = = == T g

The only invariant tensors that can project singlets ouhisf$pace (for. > 3) are
index contraction with no intermediate lines:

DG 3
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Contracted with the last two reps i8.83), they yield zero. Only the first two reps
yield singlets

———
—)—9
=l S & 6o

The projector normalization factors are the dimensions@gissociated rep3.24).
The GGGTGT group integral written out in tensor notation is

a e 1 " . . -
/dQG thchde = m (5d5g + 5652) (5h5£ + 595}1)
1 o

T (330 — 5¢da) (5h5§ - 595,{) (8.36)

We have obtained this result by first reducing 2 ande¥°. What happens if we

reducel’2 @V~ as(V @ V)? ? We first decompose the tWo® 7 tensor subspaces
into singlets and adjoint reps (see sectiod):

—— 135 C }C 1D—C 1D C

—_— 2

= "D ¢’y ¢y ¢
The two cross terms with one intermediate adjoint line cabhaoeduced further. The

2-index adjoint intermediate state contains only one siniglthe Clebsch-Gordan
series 15.29, so that the final resultp] is

= 35.38 e

By substituting adjoint rep projection operatd®si4), one can check that this is the
same combination of Kronecker deltas &s3¢).

To summarize, the projection operators constructed imtloisograph are all that
is needed for evaluation of group integrals; the group iratefgr an arbitrary rep is
given by the sum over all singlet8.(L§ contained in the rep.

(8.37)



GroupTheory  version 9.0.1, April 8, 2011

Chapter Nine

Unitary groups

P. Cvitanovic, H. Elvang, and A. D. Kennedy

U(n) is the group of all transformations that leave invariantitbemgq = 6¢¢%q,

of a complex vectoy. ForU(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can bd tiseecompose the
tensor reps of/(n). For purely covariant or contravariant tensors, the symmet
group can be used to construct the Young projection operdtosections9.1-9.2

we show how to do this for 2- and 3-index tensors by constngdtie appropriate
characteristic equations.

For tensors with more indices it is easier to construct thengyprojection opera-
tors directly from the Young tableaux. In secti®3we review the Young tableaux,
and in sectior®.4we show how to construct Young projection operators fordens
with any number of indices. As examples, 3- and 4-index tename decomposed
in section9.5. We use the projection operators to evaluate; coefficients and
characters o/ (n) in sections9.6-9.9, and we derive new sum rules foi(n) 3-j
and 64 symbols in sectio.7. In section9.8we consider the consequences of the
Levi-Civita tensor being an extra invariant {8t/ (n).

For mixed tensors the reduction also involves index cotitias and the sym-
metric group methods alone do not suffice. In secti®ri3-9.12the mixedSU (n)
tensors are decomposed by the projection operator tecksigtroduced in chap-
ter3.SU(2), SU(3), SU(4), andSU (n) are discussed from the “invariance group"
perspective in chaptdrs.

9.1 TWO-INDEX TENSORS

Consider 2-index tensorg") ® ¢(2) € ®V?2. According to 6.1), all permutations
are represented by invariant matrices. Here there are wypermutations, the
identity and the flip §.2),

The flip satisfies

(c+1)(c—1)=0. (9.1)
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The eigenvalues arg, = 1, Ay = —1, and the corresponding projection operators
(3.49 are

Plzal__(i(__ll))l:%(l-l-U):%{ +><} (9.2)

1:'2:_”1__11 _%(1_0)_%{ —><} 9.3)

We recognize the symmetrization, antisymmetrization ajpes 6.4), (6.19; P, =
S, P, = A, with subspace dimensiods = n(n+1)/2,ds = n(n—1)/2.In other
words, under general linear transformations the symmatritthe antisymmetric
parts of a tensar,;, transform separately:

r=Sx + Ax,

1 1
Tab = §(xab + xba) + §(xab - xba)

— I

The Dynkin indices for the two reps follow by 29 from 6;5’s:

_1(0)+1 N
T2 2 D)
20 20 N
h="1.4d - .
! n 1+N 2
=l(n+2). (9.5)

Substituting the defining rep Dynkin indéx! = C4 = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices
n+2 n—2

él 2n ) 2 2n ( )

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subsgacadding the third
index to each of the 2-index subspaces, the symmetric arahtii®ymmetric. The
results of this section are summarized in figlréand tabled.1. We mix the third
index into the symmetric 2-index subspace using the inaaureatrix

Q = S120(23)S12 = % lt(_ : (9.7)

Here projection operatof,, ensure the restriction to the 2-index symmetric sub-
space, and the transpositiefy;) mixes in the third index. To find the characteristic
equation forQ, we computeQ?:

1 1 1
Q® =S120(23)S120(23)S12 = 3 {S12 + S120(23)S12} = 5512 + EQ

it e
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Hence,Q satisfies

(Q-1)(Q+1/2)S12=0, (9.8)
and the corresponding projection operat@g are
Q+31
P, = fsm {0(23) + 0323 +1}S12=8

i< > =25 Jkes
P, = ?_ — 1812—§S12A23812 = gE (9.10)

Hence, the symmetric 2-index subspace combines with thetitidex into a sym-
metric 3-index subspacé (L3 and a mixed symmetry subspace with dimensions

di=trPy = n(n+1)(n+2)/3! (9.11)
4 2
dy=trPy = 3 =n(n°—1)/3. (9.12)

The antisymmetric 2-index subspace can be treated in the seay using the
invariant matrix

Q= A120023)A12 = % : (9.13)

The resulting projection operators for the antisymmetnid anixed symmetry 3-
index tensors are given in figuBel Symmetries of the subspace are indicated by
the corresponding Young tableaux, taBl& For example, we have just constructed

[12)eE=[1[2[3 e 12
4

I - e
(n2+ 1) n—i—l?)'(n—i—Z) n n3— 1) . (9.14)
The projection operators for tensors with up to 4 indicessamvn in figured.1,

and in figured.2the corresponding stepwise reduction of the irreps is givéerms
of Young standard tableaux (defined in sect®8.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sectién$-9.2that the projection operators for
2-index and 3-index tensors can be constructed using dieaistic equations. For
tensors with more than three indices this method is cumbssand it is much
simpler to construct the projection operators directlynfrthe Young tableaux. In
this section we review the Young tableaux and some aspedagnofnetric group
representations that will be important for our construttibthe projection operators
in section9.4.
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dimension

/ \ n(n+1)(n+2)
S 3l
A

n(n®>-1)
\ e

[

n(n-1)(n-2)
3!

o
I\

S S SA A

(n+3)!
41(n-1)!

I

=i
==

n?(n*-1)
12

O
% ﬁi (=12
+ -

(n- 4)I

Figure 9.1 Projection operators for 2-, 3-, and 4-indexaenén U (n), SU(n), n > p =
number of indices.
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n
s N
‘/ A n(n+1)
S =
/ n(n-1)
/S 2
A / n(n+1)(n+2)
S \ 3!
/A
n(n*-1)
3
n(n-1)(n-2)
3!
ls A S SA A S SA A S A
(n+3)!
1[2[3]4] \ ] 41(n-1)!
[1]2[4] (1] 34] (P=1)n(n+2)
8
\ \
n*(n°-1)
12
w} \J
1]2] 14
3 . (M=) n(n-2)
4 8
n!
1(n-4)!

Figure 9.2 Young tableaux for the irreps of the symmetricugréor 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columnsttsyammetrizations.
The reduction procedure is not unique, as it depends on ther an which the
indices are combined; this order is indicated by labels B, ,2,.,p in the boxes

of Young tableaux.
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9.3.1 Definitions

Partition & identical boxes intaD subsets, and leX,,,, m = 1,2,...,D, be the
number of boxes in the subsets ordered so that Ao > ... > Ap > 1. Then
the partition\ = [A1, Ao, ..., Ap] fulfills 22:1 Am = k. The diagram obtained
by drawing theD rows of boxes on top of each other, left aligned, startindpwit
at the top, is called &oung diagrant”.

Examples:
The ordered partitions fok = 4 are[4], [3,1],[2,2],[2,1,1] and[1,1,1,1]. The
corresponding Young diagrams are

RN ] -+

Inserting a number from the sét, ..., n} into every box of a Young diagram
Y, in such a way that numbers increase when reading a columrntfqoo bottom,
and numbers do not decrease when reading a row from lefthg sigelds aYoung
tableauY,. The subscript labels different tableaux derived from a given Young
diagram,.e., different admissible ways of inserting the numbers intolibxes.

A standard tableais ak-box Young tableau constructed by inserting the numbers
1,...,k according to the above rules, but using each number exantg.d~or
example, the 4-box Young diagram with partitidn= 2, 1, 1] yields three distinct
standard tableaux:

2|

)

3

)

4]

(9.15)

N
NN
[wpo]=

An alternative labeling of a Young diagram are Dynkin labéte list of num-
bersb,, of columns withm boxes: (b1bs...). Having k boxes we must have
anzl mb,, = k. For example, the partitiofit, 2, 1] and the labelg21100- - )
give rise to the same Young diagram, and so do the partifict] and the labels
(020---).

We define théransposediagramY! as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpidsel] is [2, 1, 1],

t 1,3

or, in terms of Dynkin labels, the transpose(®10. . .) is (1010. . .).
The Young tableaux are useful for labeling irreps of varigumips. We shall use
the following facts (see for instance ref.4):

[w]F

1. Thek-boxYoung diagramsabel all irreps of the symmetric grouf). .

2. Thestandard tableauxf k-box Young diagrams with no more tharnrows
label the irreps of7 L(n), in particular they label the irreps 6f(n).
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3. Thestandard tableauwof k-box Young diagrams with no more than— 1
rows label the irreps af L(n), in particular they label the irreps 6fU (n).

In this section, we consider the Young tableaux for repS;0andU (n), while the
case ofSU(n) is postponed to sectich8.

9.3.2 Symmetric groupSi

The irreps of the symmetric groufy. are labeled by thg-box Young diagrams. For
a given Young diagram, the basis vectors of the correspgridiep can be labeled
by the standard tableaux of Y; consequently the dimendigrof the irrep is the
number of standard tableaux that can be constructed frorvaheg diagram Y.
The exampleq.15 shows that the irrep = [2, 1, 1] of Sy is 3-dimensional.

As an alternative to counting standard tableaux, the dilarsy of the irrep of
S corresponding to the Young diagram Y can be computed easily a
k!
Y|’
where the numbdfY| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right obthe including the
box itself. ThenY| is the product of the numbers in all the boxes. For instance,
| 6/5[3[1]
Y = — |Y[=[4]3[1] =6!3. (9.17)
2|1
The hook rule 9.16 was first proven by Frame, de B. Robinson, and Thriail].
Various proofs can be found in the literatuf®f, 170, 133 142, 21]; see also Sagan
[309 and references therein.

We now discuss the regular representation of the symmetigyy The elements
o € S of the symmetric group), form a basis of &!-dimensional vector spadé
of elements

Ay = (9.16)

s= Y s,0€V, (9.18)
€Sk

wheres,, are the components of a vectan the given basis. I§ € V' hascomponents
(ss) andr € Sy, thenrs is an element iV with component$rs), = s,-1,. This
action of the group elements on the vector sgackfines ark!-dimensional matrix
representation of the groufy,, theregular representation

The regular representation is reducible, and each krappears\ , times in the
reductionA is the dimension of the subspakecorresponding to the irrefa This
gives the well-known relation between the order of the symimgroup|Sy| = k!
(the dimension of the regular representation) and the déines of the irreps,

|Sk| = Z A3

all irreps A

Using 0.16 and the fact that the Young diagrams label the irrepS;9five have

1
1 :k!ZW, (9.19)
(k)
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where the sum is over all Young diagrams witlthoxes. We shall use this relation
to determine the normalization of Young projection opersato appendiB.3.
The reduction of the regular representatiorbpfgives a completeness relation,

1= Py,
(k)

in terms of projection operators

Py= > Py,.

Y.€Y

The sum is over all standard tableaux derived from the Youegyem Y. EactPy
projects onto a corresponding invariant subsgace for each Y there arAy such
projection operators (corresponding to the possible standard tableaux of the
diagram), and each of these project onto one ofAReinvariant subspacégy of
the reduction of the regular representation. It followd the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary group U (n)

The irreps ofU (n) are labeled by thé-box Young standard tableaux with no more
thann rows. A k-index tensor is represented by a Young diagram withoxes

— one typically thinks of this as &-particle state. Fot/(n), a 1-index tensor has
n-components, so there atel-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagiThere are:?
2-particle states fof/(n), and as we have seen in secti®i these split into two
irreps: the symmetric and the antisymmetric. Using Youragychms, we write the
reduction of the 2-particle system as

D@D:Dj@H. (9.20)

Except for the fully symmetric and the fully antisymmetrnieips, the irreps of the
k-index tensors of/ (n) have mixed symmetry. Boxes in arow correspond to indices
that are symmetric under interchanges (symmetric mutiidarstates), and boxes
in a column correspondto indices antisymmetric underafi@nges (antisymmetric
multiparticle states). Since there are onlyabels for the particles, no more than
n particles can be antisymmetrized, and hence only standbatektux with up to:
rows correspond to irreps éf(n).

The number of standard tableafyx, derived from a Young diagram Y is given in
(9.16. Interms of irreducible tensors, the Young diagram deieesithe symmetries
of the indices, and thAy distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. Bhiuistrated in fig-
ure9.2

For a givenU (n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tablegobtained by inserting
the numberd,2,...,ninto Y in the manner described in sectiér8.1 Thus the
dimension of an irrep o/ (n) equals the number of such Young tableaux, and we
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note that all irreps with the same Young diagram have the séimension. For
U(2), thek = 2 Young tableaux of the symmetric and antisymmetric irregs ar

a1l [1f2), [2]2], and (3,

so the symmetric state @f(2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formul&s4 and ©.19 for the dimensions of
the symmetry operators. Fof(3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the amtisyetric 2-particle irrep

is 3-dimensional, again in agreement with4) and 6.15. In sectior9.4.3we state
and prove a dimension formula for a general irre/¢f).

9.4 YOUNG PROJECTION OPERATORS

Givenanirrep ol (n) labeled by &-box standard tableaux Y, we construct the cor-
responding Young projection operai®y in birdtrack notation by identifying each
box in the diagram with a directed line. The operd®aris a block of symmetrizers
to the left of a block of antisymmetrizers, all imposed ontHmes. The blocks of
symmetry operators are dictated by the Youlimgram whereas the attachment of
lines to these operators is specified by the particular stahtableau.

The Kronecker delta is invariant under unitary transfoioret: forU € U(n),
we have(UT)a“’zSZ', Uy’ = §°. Consequently, any combination of Kronecker deltas,
such as a symmetrizer, is invariant under unitary transétions. The symmetry op-
erators constitute a complete set, so &ifyt) invariant tensor built from Kronecker
deltas can be expressed in terms of symmetrizers and amtisynzers. In particu-
lar, the invariance of the Kronecker delta und&mn) transformations implies that
the same symmetry group operators that project the irref§g afso yield the irreps
of U(n).

The simplest examples of Young projection operators arsetlassociated with
the Young tableaux consisting of either one row or one colubhe corresponding
Young projection operators are simply the symmetrizerdherantisymmetrizers
respectively. As projection operators {6k, the symmetrizer projects onto the 1-
dimensional subspace corresponding to the fully symmeggesentation, and the
antisymmetrizer projects onto the fully antisymmetricressgentation (the alternating
representation).

A Young projection operator for a mixed symmetry Young tablevill here be
constructed by first antisymmetrizing subsets of indicesl, then symmetrizing
other subsets of indices; the Young tableau determineshagibsets, as will be
explained shortly. Schematically,

Py, = QYM ; (9.21)

where the white (black) blob symbolizes a set of (anti)symnizers. The nor-
malization constanty (defined below) ensures that the operators are idempotent,
Py Py, = dwPy,.

This particular form of projection operators is not unigmesection9.2we built
3-index tensor Young projection operators that were symmatder transposition.
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The Young projection operators constructed in this sedi@nparticularly conve-
nient for explicitU (n) computations, and another virtue is that we can write down
the projectors explicitly from the standard tableaux, withhaving to solve a char-
acteristic equation. For multiparticle irreps, the Youmgjection operators of this
section will generally be different from the ones constedcfrom characteristic
equations (see sectiors.1-9.2); however, the operators are equivalent, since the
difference amounts to a choice of basis.

9.4.1 Construction of projection operators

LetY, be ak-box standard tableau. Arrange a set of symmetrizers quoneng to
the rows inY ., and to the right of this arrange a set of antisymmetrizemsespond-
ing to the columnsifY,. For a Young diagram Y witk rows and columns we label
therows $, S, ..., Sy and to the columns A A, ..., A;. Each symmetry operator
in Py is associated to a row/columnin Y, hence we label a symmetyator after
the corresponding row/column, for example,

=)

%&

0=,
S1]1/2|3| 4|5 ‘, ‘
Si 67|89 ‘ = &y ﬂ""rﬂx’}/ (9.22)
S3 | 10| 11] “1 "v

Let the lines numbered 1 foenter the symmetrizers as described by the numbers
in the boxes in the standard tableau and connect the set ohetnmers to the set
of antisymmetrizers in a nonvanishing way, avoiding midtimtermediate lines
prohibited by 6.17). Finally, arrange the lines coming out of the antisymnzens
such that if the lines all passed straight through the symynogierators, they would
exit in the same order as they entered. This ensures thatexpamsion of all the
symmetry operators, the identity appears exactly once.

We denote bysS;| or |A;| thelengthof a row or column, respectively, that is the
number of boxes it contains. Thii4;| also denotes the number of lines entering
the antisymmetrizer A In the above example we hajf | = 5, |As| = 3, etc.

The normalizationvy is given by

(T2 silt) (T 1as1) 029
ay = y .
Y|
where|Y] is related through9.16 to Ay, the dimension of irrep Y ob}, and is a
hook ruleS; combinatoric number. The normalization depends only orstiape
of the Young diagram, not the particular tableau.

Example:The Young diagrarrB:D tells us to use one symmetrizer of length
three, one of length one, one antisymmetrizer of length amad,two of length one.
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There are three distinétstandard arrangements, each corresponding to a prajectio
operator

1[2[3

(9.24)

|
o)
]

1/2[4] (9.25)

34|

N~

, (9.26)

|
o)
]

1444 4444 1444
+++++ﬁ#+++++

where the normalization constantis = 3/2 by (9.23. More examples of Young
projection operators are given in sectiasb.

9.4.2 Properties

We prove in appendiB that the above construction yields well defined projection
operators. In particular, the internal connection betwibensymmetrizers and an-
tisymmetrizers is unique up to an overall sign (proof in ampe B.1). We fix the
overall sign by requiring that when all symmetry operatoesexpanded, the iden-
tity appears with a positive coefficient. Note that by comstion (the lines exit in
the same order as they enter) the identity appears exaadiorhe full expansion
of any of the Young projection operators.

We list here the most important properties of the Young mtoj@ operators:

1. The Young projection operators avghogonal If Y and Z are two distinct
standard tableaux, théw Pz = 0 = PzPy.

2. With the normalization9.23, the Young projection operators are indeed
projection operatorsi.e., they are idempotenP? = Pv.

3. For a givenk the Young projection operators constitute a complete sgt su
thatl = 3 Py, where the sum is over all standard tableaux Y witioxes.

The proofs of these properties are given in appeBdix

9.4.3 Dimensions o/ (n) irreps

The dimensiondy of a U(n) irrep Y can be computed diagrammatically as the
trace of the corresponding Young projection operader,= tr Py. Expanding
the symmetry operators yields a weighted sum of closed-dimgrams. Each loop
is worth n, and since the identity appears precisely once in the eiganthe
dimensiondy of a irrep with ak-box Young tableau Y is a degréepolynomial in

n.

Example:We compute we dimension of tfi&(n) irrep 1 2‘:

> >

=)
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5 S S
41 — n >
S 3\2 < <
n(n? —1)

3

1
:g(n3+n2—n2—n):

(9.27)

In practice, this is unnecessarily laborious. The dimemsioalU (n) irrep Y is
given by
fx(n)
Y|
Herefy(n) is a polynomial im obtained from the Young diagram Y by multiplying
the numbers written in the boxes of Y, according to the follmgyrules:

dy =

(9.28)

1. The upper left box contains an
2. The numbers in a row increase by one when reading fromdeitht.
3. The numbers in a column decrease by one when reading fioto tmottom.

Hence, ifk is the number of boxes in Yy (n) is a polynomial inn of degreek.
The dimension formulad(28 is well known (see for instance ref.3d).

Example:ln the above example with the irr Jg.. 2‘, we have

dy — fy(n) n(n?-1)

Y3
in agreement with the diagrammatic trace calculat27).

Example:With Y = [4,2,1], we have

n | n+l n+2* n+#
fy(n)=|n1| n :nQ(nQ—l)(n2—4)(n+3),

n-2
6/4]2[1]

|Y[=|3]1 = 144, (9.29)
1]

hence,
20,2 2

gy =" (n® —1)(n* —4)(n + 3) . (9.30)

144

Usingdy = tr Py, the dimension formul&(28 can be proven diagrammatically
byinduction onthe number ofboxesintheirrep Y. The proghisnin appendiB.4.
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The polynomialfy (n) has an intuitive interpretation in terms of strand colosing
of the diagram fortr Py. Draw the trace of the Young projection operator. Each
line is a strand, a closed line, which we draw as passinggsir#irough all of the
symmetry operators. For /&box Young diagram, there ate strands. Given the
following set of rules, we count the number of ways to cola hstrands using
colors. The top strand (corresponding to the leftmost bdkérfirst row of Y) may
be colored im ways. Color the rest of the strands according to the follgwires:

1. If a path, which could be colored in ways, enters an antisymmetrizer, the
lines below it can be colored im — 1, m — 2, ... ways.

2. If a path, which could be colored in ways, enters a symmetrizer, the lines
below it can be colored im + 1, m + 2, ... ways.

Using this coloring algorithm, the number of ways to coloe #trands of the
diagram isfy (n).

2|36
Example:ForY = 5} 7} ‘, the strand diagram is

[oo] ]

(9.31)

Each strand is labeled by the number of admissible colorikystiplying these
numbers and including the factby|Y|, we find

dy=n—-2)(n—1)n*(n+1)*(n+2)(n+3)

‘}—'hm
~

_n(n+1)(n+3)!
- 2632(p—3)!

in agreement with9.29.

9.5 REDUCTION OF TENSOR PRODUCTS

We now work out several explicit examples of decompositibdiect products of
Young diagrams/tableaux in order to motivate the genetasrior decomposition
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Y, Py, dvy,
n(n+1)(n+2)
JE e
4
LR
3] n(n®—1)
3
1] 3] 4 !
2 3
I (n—2)én—l)n
®[2]® — n’

Table 9.1 Reduction of 3-index tensor. The last row showsdihect sum of the Young
tableaux, the sum of the dimensions of the irreps adding g tand the sum of
the projection operators adding up to the identity as vetifie of completeness

(3.51).

of direct products stated below, in secti@®.1 We have already treated the decom-
position of the 2-index tensor into the symmetric and thésgnimetric tensors, but
we shall reconsider the 3-index tensor, since the projecterators are different
from those derived from the characteristic equations itice®.2

The 3-index tensor reduces to

We@sE-(M2e[ )o@

=[1]2[3]® é 2/, é 3@. (9.32)
R

The corresponding dimensions and Young projection operate givenintabl@. 1
For simplicity, we neglect the arrows on the lines where lensls to no confusion.

The Young projection operators are orthogonal by inspaciMde check complete-
ness by a computation. In the sum of the fully symmetric aadity antisymmetric
tensors, all the odd permutations cancel, and we are |dit wit

=S =)

Expanding the two tensors of mixed symmetry, we obtain

o k) =R
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Adding the two equations we get

ST et

verifying the completeness relation.

For 4-index tensors the decomposition is performed as iB-dheex case, result-
ing in table9.2

Acting with any permutation on the fully symmetric or antisyetric projection
operators gives 1 times the projection operator (séed and 6.18). For projection
operators of mixed symmetry the action of a permutation tassimple, because
the permutations will mix the spaces corresponding to tiératit tableaux. Here
we shall need only the action of a permutation withinra 3symbol, and, as we
shall show below, in this case the result will again be simal@actor+1 or 0.

9.5.1 Reduction of direct products

We state the rules for general decompositions of directymtsdsuch asy(20 in
terms of Young diagrams:

Draw the two diagrams next to each other and place in each bitresecond
diagramanu;, i = 1, ..., k, such that the boxes in the first row all havein them,
second row boxes have in them,etc. The boxes of the second diagram are now
added to the first diagram to create new diagrams accordithgtfmllowing rules:

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to timeo$uhe
number of boxes in the two initial diagrams.

3. For Un) no diagram has more thanrows.

4. Making a journey through the diagram starting with thertmp and entering
each row from the right, at any point the numbergé encountered in any
of the attached boxes must not exceed the number of preyiensbuntered
ai—1's.

5. The numbers must not increase when reading across a rowdfoto right.

6. The numbers must decrease when reading a column from taogittmm.

Rules 4-6 ensure that states that were previously symmaétére not antisym-
metrized in the product, and vice versa. Also, the rulesgmrerzounting the same
state twice.

For example, consider the direct product of the partiti@hand[2, 1]. ForU (n)
with n > 3 we have

[ [ |

ag al‘ ‘ ‘ 31‘ 31‘ ‘ al‘
= a ajla
l:\:\:‘ ® ay as & a1 az b | ®laa)

— — az az

while for n = 2 we have

(T op =g e -
ERE ED ’




GroupTheory  version 9.0.1, April 8, 2011

Yo Py, dy,
n(n+1)(n+2)(n+3)
12754 == R

[y

é 8

[N

N

[1]e[2]o[3] (4]

1]2 4
n?(n?—1)

12

1,3 4

24 3

1] 2] 3

3] 2

|4]

1]3] 3 Y (n—

R e =

2] 2

13

% n(n—1)(n—2)(n—3)

24

Table 9.2 Reduction of 4-index tensors. Note the symmetdeun <> —n.
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As a check that a decomposition is correct, one can compatdithensions for

the product of irreps on the LHS and the sums of the irreps RS to see that
they match. Methods for calculating the dimension &f @) irreps are discussed
in section9.4.3

9.6 U(n) RECOUPLING RELATIONS

For U(n) (as opposed t&U (n); see sectio®.8) we have no antiparticles, so in
recoupling relations the total particle number is consgr@onsider as an example
the step-by-step reduction of a 5-particle state in termghefYoung projection
operators:

—
== = g2
—> X, Z =»—  W,X,Z

_ o« I
_w;(,z W :

More generally, we can visualize any sequenc¥ (f) pairwise Clebsch-Gordan
reductions as a flow with lines joining into thicker and théclprojection operators,
always ending in a maxim#&ty that spans across all lines. In the clebsches notation
of section5.1, this can be redrawn more compactly as

== Wixzbé

X X
N %
pu— Z Z .
W W
W.,X,Y,Z

The trace of each term in the final sum of the 5-particle s&teli25 symbol of
the form

(9.34)

)

W w

In the trace 9.34) we can use the idempotency of the projection operatorsubldo
the maximal Young projection operaiBx,, and sandwich by it all smaller projection

operators:
x|
-. Y. (9.35)

From uniqueness of connection between the symmetry opsfate appendiz.1),
we have for any permutation € Sy:

k; III R , (9.36)

Hitt
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wherem, = 0, £1. Expressions such a8.85 can be evaluated by expanding the
projection operator®vw, Px, Pz and determining the value ok, of (9.36 for
each permutation of the expansion. The result is

i EE = M(Y; W, X, Z), (9.37)

where the factoi (Y; W, X, Z) does not depenzhn and is determined by a purely
symmetric group calculation. Examples follow.

9.7 U(n) 3n-j SYMBOLS

In this section, we constru€t(n) 3-j and 65 symbols using the Young projection
operators, and we give explicit examples of their evaluatBum rules for 3¢'s and
6-j's are derived in sectiof.7.3

9.7.1 3-j symbols

Let X, Y, and Z be irreps ot/ (n). In terms of the Young projection operatds,
Py, andPyz, aU(n) 3-vertex 6.4) is obtained by tying together the three Young

projection operators,
X G :
Y = l Yk . (9.38)
z :

Since there are no antiparticles, the construction regkitet kz = ky.
A 3-j coefficient constructed from the vertex 88 is then

(9.39)

As an example, take

x - [1]2]

Then
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whereM = 1 here. Below we derive thdk, (the dimension of the irrep Y) is indeed
the value of this 3t symbol.

In principle the value of a 3-symbol ©.39 can be computed by expanding
out all symmetry operators, but that is not recommendedastimber of terms
in such expansions grows combinatorially with the total bemof boxes in the
Young diagram Y. One can do a little better by carefully seéfgpcertain symmetry
operators to expand. Then one simplifies the resulting dragrusing rules such as
(6.7),(6.9),(6.17), and 6.18 before expanding more symmetry operators. However,
a much simpler method exploitS.86 and leads to the answer — in the case of
(9.40 itis dy = (n* — 1)n*(n + 1)(n + 2)/144 — much faster.

The idea for evaluating a 3symbol ©.39 using ©.36 is to expand the projec-
tionsPx andP7 and determine the value oi, in (9.36 for each permutation
of the expansion. As an example, consider thes3aimbol ©.40. With Py as in
(9.40 we find

o = X = >3
el = X = x
Mee1 1 0 1 —1
e = x =< 3¢
Mige 1 -1 0 —1
SO
Po-IsBe - H= - = - 2 - 3¢}
Px=Pu®1=i{§ - = s E - é}
M(Py;Px) = %{1 — 0 + 1 - (—1)}
P;=10Py = %{E - ; + g - ;}
M(Pvy;Pz) = {1 - (-1 4+ 0 - (=D}
and hence

2 I I
= (%) O{Xaz kEE = kEE ,

and the value of the 34is dy as claimed in9.40. That the eigenvalue happens to
be 1is an accident— in tabulations ofi&ymbols [L17] it takes a range of values.

The relation 9.36 implies that the value of any/(n) 3-j symbol ©.39 is
M(Y;X,Z)dy, wheredy is the dimension of the maximal irrep Y. Again we remark
that M (Y; X, Z) is independentf n.
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9.7.2 6-j symbols

A generallU (n) 6-j symbol has form

(9.41)

Using the relationq.36 we immediately see that
X U
= Mdy, (9.42)
Y

where) is a pure symmetric grouf;, number, independent &f (n); it is sur-
prising that the only vestige df (n) is the fact that the value of a fsymbol is
proportional to the dimensiafy, of its largest projection operator.

Example:Consider the 6-constructed from the Young tableaux

u=PF v=m@m w=n,
= 1] 3]

_ 3] _ Y

X_i7 Y—i, Z—

Using the idempotency we can double the projecibn and sandwich the other
operators, as in9(35. Several terms cancel in the expansion of the sandwiched
operator, and we are left with

1= - >< j—

@l:.:_ﬁ{:_f_:_x

My : +1 0 ~1 0
>< g

=X x X

0 —1 0 +1

We have listed the symmetry factars, of (9.36 for each of the permutations
sandwiched between the projection operai®ys We find that in this example the
symmetric group factoM of (9.42) is

4 1
M = ?OZUO[\/OLVVO[)(O[Z: g,

so the value of the -is

) . n(nQ—l)(n—2).

4!

— Zdy =
3Y
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The method generalizes to evaluations of &nyj symbol ofU(n) .

Challenge: We have seen that there is a coloring algorithm for the dinoeadity
of the Young projection operator®pen questiorFind a coloring algorithm for the
3-j's and 64's of SU(n).

9.7.3 Sum rules

Let Y be a standard tableau with; boxes, and lef\ be the set of all standard
tableaux with one or more boxes (this excludes the trikiat 0 representation).
Then the 37 symbols obey the sum rule

> = (ky — 1dy. (9.43)

X,ZeN 2

The sum is finite, because thej3s nonvanishing only if the number of boxes in X
and Z add up td&y, and this happens only for a finite number of tableaux.

To prove the 3 sum rule 0.43, recall that the Young projection operators con-
stitute a complete seEXeAk Px = 1, wherel is the[k x k] unit matrix andAy,
the set of all standard tableaux of Young diagrams witioxes. Hence:

= > dy = (ky —1)dy.

kx=1

The sum rule offers a useful cross-check on tabulationspf&ues.
There is a similar sum rule for the Bsymbols:

X V]
1
> =5 by = D)(ky —2)dy . (9.44)
X,Z,UV,WEA Y

Referring to the 67 (9.41), let ky be the number of boxes in the Young diagréim
kx be the number of boxes X, etc.

Let ky be given. From{.41) we see thakx takes values betwednandky — 2,
andky takes values betwe@mandky — 1, subject to the constraigk + kz = ky.
We now sum over all tableaux U, V, and W keeping kx, andkz fixed. Note that
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kv can take values, . .., kz — 1. Using completeness, we find

X U hy—1 X U
U,V,WeA Y kv=1 VEAkV WEAkZ*kV UEAkyka Y

Now sum over all tableaux X and Z to find

X u ky —1 4
> =D (k=1 3, D
X,Z,UV,WeEA Y kz=2 ZEAkZ XGAky—kZ X

:%(;W ~D)(ky — 2)dy,

verifying the sum rule4.44) for 6-j symbols.

9.8 SU(n) AND THE ADJOINT REP

The SU(n) group elements satisffet G = 1, so SU(n) has an additional in-
variant, the Levi-Civita tensafa, a,...a, = Ga, Gay® -+ Ga, "€y a)...ar, - THE
diagrammatic notation for the Levi-Civita tensors wasadticed in 6.27).

While the irreps of/ (n) are labeled by the standard tableaux with no more than
n rows (see sectiof.3), the standard tableaux with a maximumof 1 rows label
the irreps ofSU(n). The reason is that i8U(n), a column of lengtm can be
removed from any diagram by contraction with the Levi-Giviénsor §.27). For
example, forSU (4)

[ ]
— | ‘ (9.45)

Standard tableaux that differ only by columns of lengttorrespond to equivalent
irreps. Hence, for the standard tableaux labeling irreg.a(n ), the highest column
is of heightn — 1, which is also the rank ofU(n). A rep of SU(n), or A,,_1
in the Cartan classification (tablé6) is characterized by, — 1 Dynkin labels
b1bs . ..b,—1. The corresponding Young diagram (defined in secficghl) is then
given by(b1bs ...b,-100...), or (b1bs...b,_1) for short.

For SU(n) a column withk boxes (antisymmetrization @f covariant indices)
can be converted by contraction with the Levi-Civita tenstir a column of n — k)
boxes (corresponding t@ — k) contravariant indices). This operation associates
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with each diagram a conjugate diagram. Thus ¢bejugateof a SU(n) Young
diagram Y is constructed from the missing pieces neededmplaie the rectangle
of n rows,

SU(5) : ~n : (9.46)

To find the conjugate diagram, add squares below the diagfafrsach that the
resulting figure is a rectangle with heightand width of the top row in Y. Remove
the squares corresponding to Y and rotate the rest by 18@eedgrhe result is the
conjugate diagram of Y. For example, f8t/(6) the irrep(20110) has(01102) as

its conjugate rep:

; é@'
SU(6) : & . (9.47)

In general, theSU (n) reps(bibs ...b,—1) and(b,_1 ...bb1) are conjugate. For
example(10...0) stands for the defining rep, and its conjugat@is. . . 01), i.e,,
a column ofn — 1 boxes.

The Levi-Civitatensor converts an antisymmetrized coidecofn—1 “in”-indices
into 1 “out™-index, or, in other words, it converts an—1)-particle state into a single
antiparticle state. We ugejto denote the single antiparticle state; it is the conjugate
of the fundamental representationsingle particle state. For example, f6¢/(3)
we have

(10)=[] = (20)=[T]=6
(01)==3 (02) =} =5 (9.48)
an=—1J=s8  @n=+1l=15.

The product of the fundamental rég and the conjugate rep] of SU(n) de-
composes into a singlet and thdjoint representation

|

n - n = n - n =1 + (n*-1).

Note that the conjugate of the diagram for the adjoint isatfa adjoint.
Using the construction of secti@4, the birdtrack Young projection operator for
the adjoint representatiot can be written

0 e [
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Using P 4 and the definition{.39 of the 3-vertex,SU(n) group theory weights
involving quarks, antiquarks, and gluons can be calcul&te@xpansion of the
symmetry operators or by application of the recouplingtieta For this reason, we
prefer to keep the conjugate reps conjugate, rather thdacieg them by columns
of (n — 1) defining reps, as this will give uSU (n) expressions valid for any.

9.9 AN APPLICATION OF THE NEGATIVE DIMENSIONALITY
THEOREM

An SU (n) invariant scalar is a fully contracted object (vacuum belpbbnsisting
of Kronecker deltas and Levi-Civita symbols. Since theeerar external legs, the
Levi-Civitas appear only in pairs, making it possible to done them into antisym-
metrizers. In the birdtrack notation, &%/ (n) invariant scalar is therefore a vacuum
bubble graph built only from symmetrizers and antisymraets.

The negative dimensionality theorem () states that for angU (n) invari-
ant scalar exchanging symmetrizers and antisymmetrigexgiivalent to replacing
n by —n:

SU(n) = SU(—n) , (9.49)

where the bar 08U indicates transpositiofng., exchange of symmetrizations and
antisymmetrizations. The theorem also applie§’ta) invariant scalars, since the
only difference betweeti (n) andSU (n) is the invariance of the Levi-Civita tensor
in SU (n). The proof of this theorem is given in chapfi:

We can apply the negative dimensionality theorem to contjpusiof the dimen-
sions of thel/ (n) irreps,dy = tr Py. Taking the transpose of a Young diagram
interchanges rows and columns, and it is therefore equitedenterchanging the
symmetrizers and antisymmetrizerstinPy. The dimension of the irrep corre-
sponding to the transpose Young diagréfican then be related to the dimension of
theirreplabeled by Y aéy:(n) = dy(—n) by the negative dimensionality theorem.

Example:[3, 1] is the transpose d2, 1, 1],

t
(1 23) _ éz\.
- 4

Note then — —n duality in the dimension formulas for these and other tabtea
(table9.2).

Now for standard tableaux X, Y, and Z, compare the diagraime3# constructed
from X, Y, and Z to that constructed froiY, Z?, andY*. The diagrams are related by
areflection in a vertical line, reversal of all the arrowsloalines, and interchange of
symmetrizers and antisymmetrizers. The first two operatifmmot change the value
of the diagram, and by the negative dimensionality theoremvalues of two 3¢s
are related by: <+ —n (and possibly an overall sign; this sign is fixed by requiring
that the highest power of comes with a positive coefficient). In tabulations, it
suffices to calculate approximately half of allj3- Furthermore, the 3-sum rule
(9.43 provides a cross-check.
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The two 65 symbols

are related by areflection in a vertical line, reversal oftedlarrows on the lines, and
interchange of symmetrizers and antisymmetrizers — thisbeaseen by writing
out the 65 symbols in terms of the Young projection operators a®id1). By the
negative dimensionality theorem, the values of the twpos§ambols are therefore
related byn <> —n.

9.10 SU(n) MIXED TWO-INDEX TENSORS

We now return to the construction of projection operatasaificharacteristic equa-

tions. Consider mixed tensags” ® g? € V @ V. The Kronecker delta invariants

are the same as in sectiri, but now they are drawn differently (we are looking
at a “cross channel”):

—_——
identity: 1=12% = 550) = ,

—_—
trace: T=T7 5= 0565 = D C

The T matrix satisfies a trivial characteristic equation

TQZD O CznT, (9.52)

i.e, T(T —nl) = 0, with rootsA\; = 0, A2 = n. The corresponding projection
operators§.49 are

P1:%T: %D C (9.53)
Pom1- = ) -« (9.54)

with dimensionsi; = trP; = 1, d» = trPy = n? — 1. P, is the projection
operator for the adjoint rep o$U(n). In this way, the invariant matri" has
resolved the space of tensars € V @ V' into a singlet and a traceless part,

(9.51)

1
Pz = _xcgb Pox = xz — (lxg) (SZ . (955)
n

cra
n

Both projection operators leav¢ invariant, so the generators of the unitary trans-
formations are given by their sum

U(n) : %}C = , (9.56)

and the dimension of thé(n) adjointrepisV = tr P4 = §26% = n?. If we extend
the list of primitive invariants from the Kronecker deltatt® Kronecker delta and
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the Levi-Civita tensor@.27), the singlet subspace does not satisfy the invariance
condition .56

\J
£0.

For the traceless subspa&eq4), the invariance condition is

|

1
— - —0.
n

Thisisthe same relation &8.25, as can be shown by expanding the antisymmetriza-
tion operator usingg.19, so the invariance condition is satisfied. The adjoint rep

is given by
. L N !
SU(n) a}c_/ N n) C
1
L (s ()t =y — Sopsd (9.57)
a n
The special unitary grou§U (n) is, by definition, the invariance group of the Levi-
Civita tensor (hence “special”) and the Kronecker deltax@leeunitary”), and its
dimension isN = n? — 1. The defining rep Dynkin index follows fron7(27 and
(7.28
~t=2n (9.58)
(This was evaluated in the example of secttoh) The Dynkin index for the singlet
rep ©.55 vanishes identically, as it does for any singlet rep.

9.11 SU(n) MIXED DEFINING ® ADJOINT TENSORS

In this and the following section we generalize the reduchy invariant matrices
to spaces other than the defining rep. Such techniques wigtyauseful later on, in
our construction of the exceptional Lie groups. We considerdefiningz adjoint
tensor space as a projection frémg V ® V space:

= {} (9.59)

&
< <

The following two invariant matrices acting &7 @ V space contract or interchange

defining rep indices:
R= ; 2 (9.60)
Q= g 2 = Z E . (9.61)
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Dynkin labels (10...1) ® (10...) = (10...) & (200...01) @& (010...01)

Dimensions: (n?—1)n = n n(n+12)(n72)

+

+

n(n—1)(n+2)
2

(n+2)(3n—1) (n—2)(3n+1)
4an + 4an

3
+
3.\3
|
Il
|~
+

Indices:

SU(3) example:

Dimensions: 8-3 = 3 + 15 + 6

Indices: 13/3 = 1/6 + 10/3 + 5/6
SU(4) example:

Dimensions: 15-4 = 4 + 36 + 20
Indices: 47/8 = 1/8 + 33/8 + 13/8

Projection operators:

P = 2

n2—1

P, =

1
L e
_X_LH
< < n—l

(SIS

P, =

[N

Table 9.3S5U(n) V ® A Clebsch-Gordan series.
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R projects onto the defining space and satisfies the chastatexguation

2 _
R = <~ " 'R (9.62)
n

The corresponding projection operata3sA@ are

n
Pl_n2—1>_(_<’
P, —2L>-<-< (9.63)
—_— -1

Q takes a single eigenvalue on tRe subspace

1
QR= < /=-"R. (9.64)

Q?2 is computed by inserting the adjoint rep projection operéid7):

el o

The projection on th&, subspace yields the characteristic equation

P,(Q*-1)=0, (9.66)

with the associated projection operators

Py= %P4(1 +Q) (9.67)
1

2{—(—_n2n—1 }{J’?{}
:%{ ) +7{_ 11>"_<}’

M ) e

The dimensions of the two subspaces are computed by takioggtiof their projec-
tion operators:

dQZtI‘PQZ P2 %
n—l (n+2)

1
=5 (N + N = N/(n+1))

(9.69)

and similarly fords. This is tabulated in tabl@.3.
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9.11.1 Algebra of invariants

Mostly forillustration purposes, let us now perform the saralculation by utilizing
the algebra of invariants method outlined in secBich A possible basis set, picked
fromtheV ® A — V ® A linearly independent tree invariants, consists of

(e,R,Q)—(_(_, ;2 K) (9.70)

The multiplication table .42 has been worked out i9(62), (9.64), and 0.65.
For example, thét,)s” matrix rep forQt is

e 0 0 1 e
> (Q)s"t, =Q (R) = (0 ~1/n 0) (R) (9.71)
veT Q 1 =1/n 0 Q

and similarly forR.. In this way, we obtain th x 3] matrix rep of the algebra of
invariants

100 0 1 0 0 0 1
{e,R,Q} = 010],{on-20],[0-1/n0 . (9.72)
001 0 —1/n 0 1 —1/n 0

From 9.62 we already know that the eigenvaluesRfare{0,0,n — 1/n}. The
last eigenvalue yields the projection operd®qr= (n — 1/n) !, but the projection
operatoiP, yields a 2-dimensional degenerate r@has three distinct eigenvalues
{-1/n,1, -1} and is thus more interesting; the corresponding projecip@rators
fully decompose thé” @ A space. The- 1/n eigenspace projection operator is
againPq, butPy is split into two subspaces, verifyin§.69 and ©.67):

_Q+1Q+51) 1 1
P = a0 _5(1+Q_n—+1R>

1
P;= Q-1@Q+31) _1<1—Q—LR) . (9.73)
(-1-1)(-1+1/n) 2 n—1
We see that the matrix rep of the algebra of invariants is terradtive tool for
implementing the full reduction, perhaps easier to impletas a computation than
an out and out birdtracks evaluation.
To summarize, the invariant matrRR projects out the 1-particle subspaBe.

The particle exchange matri® splits the remainder into the irreduciblé ® A

subspaceP, andPs.

9.12 SU(n) TWO-INDEX ADJOINT TENSORS

Consider the Kronecker product of two adjoint reps. We wametluce the space
oftensorse;; € A® A, withi = 1,2, ... N. The firstdecomposition is the obvious
decompositiond.4) into the symmetric and antisymmetric subspaces,

1

= S 4+ A
St
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The symmetric part can be split into the trace and the trasglart, as in9.54):

1
S=—T+P
N + Pg

= GUE-m0 G e

Further decomposition can be effected by studying invaneatrices in thé’ 2 ®72
space. We can visualize the relation betwgen A andV? ® v’ by the identity

: - {}: . (9.76)

This suggests the introduction of two invariant matrices:

Q= (9.77)

R— Eg _E:):,C)( (9.78)

R can be decomposed b9.64) into a singlet and the adjoint rep

M + 5 (9.79)

= R/ + i,
The singlet has already been taken into account in the traceless tensor decom-
position ©.75. TheR’ projection on the antisymmetric subspace is

By the Lie algebra4.47),

1 n n
ARA? = ow {3 =% e« = TARA 9.81
(AR'A) = o & 'ARA. (@8))

and the associated projection operators,

1 1
(Ps5)ij = %Cijmcmlk = %>—<
1
P,— I - %H (9.82)

split the antisymmetric subspace into the adjoint rep areh@amder. On the sym-
metric subspacé(75, R’ actsaP sR'Ps. AsR'T = 0, thisis the same &R’S.

Consider

R
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We compute

-1 OO0 -00
OO 4 . }

1 1 1

Hor o

_ L {n* -4} (9.83)

2n
Hence SR’S satisfies the characteristic equation
/ n?—4 /
(SR S — 5 ) SR'S=0. (9.84)

The associated projection operators split up the tracelgametric subspacé (75
into the adjoint rep and a remainder:

2n , 2n

Py =Ps— P, . (9.86)

The Clebsch-Gordan coefficients fB%, are known as the Gell-Mand;;;, ten-

sors [L37):
O =gt (0.87)

ForSU(3), P2 is the projection operatdB ® 8) symmetric— 8. Interms ofd; ;. ’s,
we have

n n
(P2)ijre = mdijmdmkl = m>—< ; (9.88)

with the normalization

2(n? —4)
digndije = —4{ p—= b (9.89)

Next we turn to the decomposition of the symmetric subspadeded by matrixQ
(9.77). Q commutes witls:

~8 8 8]

=SQ =SQsS. (9.90)
On the 1-dimensional subspace 179, it takes eigenvalue 1/n

1
TQ:) Cg_—ET; (9.91)

s0Q also commutes with the projection operakyy from (9.75),

T) =PsQ. (9.92)

1
QPs=Q<S—n2_1
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Q? is easily evaluated by inserting the adjoint rep projectiparators4.54)

{0) e

Projecting on the traceless symmetrlc subspace gives

Pg <Q2 4 ) =0. (9.94)
On theP; subspace&) gives

Eﬂz}%{i%z%;%}}

2O ©95)

Hence,Q has a single eigenvalue,
2
QP; = ——P», (9.96)
n

and does not decompose e subspace; this is as it should be RBysis the adjoint
rep and is thus irreducible. APy, subspaced.93 yields a characteristic equation

P2 (Q*-1)=0,
with the associated projection operators

Py= Py(1-Q (9.97)
{i[ Ig RS =ald]
PP (1+Q) = L(Ps — Py
=5 (Ps—Pi+s )
L(s+sq-"2p ! > (9.98)

/—’h/\/_\

S Ig <)
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This completes the reduction of the symmetric subspace. i), As in (9.90, Q
commutes withA

QA =AQ=AQA. (9.99)
On the antisymmetric subspace, é equation 9.93 becomes
O_A<Q2—1+2R), A=AQ*-1-P,). (9.100)
n

The adjointrep%.82 should be irreducible. Indeed, it follows from the Lie aiga,
thatQ has zero eigenvalue for any simple group:

P.Q = C%}(% —0. (9.101)

On the remaining antisymmetric subsp&e(9.100 yields the characteristic equa-
tion

P, (Q*-1)=0, (9.102)
with corresponding projection operators
Ps= (1+Q)=—A(1+Q Pa)

N = m»—l

(181t e
81 ]

To compute the dimensions of these reps we need

tr AQ = g g , (9.105)

so both reps have the same dimension
1 (n/ —1)(n?-2)
2

P;=

|>—l l\.’)l)—‘

1
d6:d7—2(trA—trPA) —n? —1

— W _ (9.106)

Indeed, the two reps are conjugate reps. The identity

1518 -

obtained by interchanging the two left adjoint rep legs, liegthat the projection

operators9.103 and ©.109 are related by the reversal of the loop arrow. This is

the birdtrack notation for complex conjugation (see sectid).
This decomposition of tw&'U (n) adjoint reps is summarized in talilel.
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9.13 CASIMIRS FOR THE FULLY SYMMETRIC REPS OF SU(n)

In this section we carry out a few explicit birdtrack casimmaluations.
Consider the fully symmetric Kronecker productoparticle reps. Its Dynkin
label (defined on pag&06) is (p,0,0...0), and the corresponding Young tableau

is arow ofp boxes{ [ | --- [P]. The projection operator is given b§.4)

: p
Ps—S—g E:_:z,
1

and the generatod (40 in the symmetric rep is

J

Ti —pi: E (9.108)

To compute the casimirs, we introduce matrices:

R

Xl=0;(T")! = a~——€n. (9.109)
We next compute the powers &f:

S e~
{1 ] +ae-0dbidl+o-ne-23 2Tt
#6023 ST E+ 0 120 - 3)%}

X3

X4:p

: (9.110)
Thetr X* are then
tr X0 =d, (" +£ - 1) (see 6.13) (9.111)
tr X=0 (semisimplicity) (9.112)
p(p+n)
tI'X2 d m tr fE2 (9113)
ds 1 o (p-1p-2)
tr X3 = n <1+3 —|—1+2(n—|—1( 2))trx
_(ntpln+2p) p(n+p)(n+2p) 4
ST T T T ) Y (0.114)

-1 —1p—-2 —1p—2p—
tr X4 = dp 14727 e 0P P LIP 2P =3 s
n+1 n+1ln+2 n+ln+2n+3

i s (3+6p_2 +3p_2p_3) (trx2)2} . (9.115)

n+1 n+2 n+2n+3
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The quadratic Dynkin index is given by the ratiotofX 2 andtr 4 X 2 for the adjoint
rep (7.30:

tr X2 d,p(p+n)
tra X2  2n2(n+1)°

0= (9.116)

To take a random example from the Patera-Sankoff tatiléd],[the SU(6) rep
dimension and Dynkin index

rep dim U

(0000014) 11628 6460 (9.117)

check with the above expressions.

9.14 SU(n), U(n) EQUIVALENCE IN ADJOINT REP
The following simple observation speeds up evaluation oé@djoint rep group-

theoretic weightsjn-;)’s for SU (n): The adjoint rep weights fdv (n) andSU (n)
are identical. This means that we can uselitie) adjoint projection operator

vm: I = X (9.118)

instead of the tracelesd/ (n) projection operatory.54), and halve the number of
terms in the expansion of each adjoint line.

Proof: Any internal adjoint line connects tw@;;;’s:

The trace part of4.54) cancels on each line; hence, it does not contribute to thes pu
adjoint rep diagrams. As an example, we reevaluate therddjoiadratic casimir

C’AN—®—28—2{@—2@}.

Now substitute thé/ (n) adjoint projection operatof(119:

C’AN—2{8—2'}—2nn -1),

in agreement with the first exercise of sectibi.
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9.15 SOURCES

Section®.3-9.90f this chapter are based on Elvagta@l.[113. The introduction to
the Young tableaux folows refl[LJ, which, in turn, is based on Lichtenbergfl[/]
and Hamermeshlpd. The rules for reduction of direct products follow Lichten
berg [214], stated here as in refl[L7. The construction of the Young projection
operators directly from the Young tableaux is describedbin der Waerder[35,
who ascribes the idea to von Neumann.

R. Penrose’s papers are the first (known to the authors) talasoung pro-
jection operators into a diagrammatic form. Here we use ¢d¥ndiagrammatic
notation for symmetrization operatot&{], Levi-Civita tensors 289, and “strand
networks” 287]. For several specific, few-particle examples, diagrantméaiung
projection operators were constructed by Cannifig,[Mandula P27, and Sted-
man [319. A diagrammatic construction of thé(n) Young projection operators
for any Young tableau was outlined in the unpublished ré], without proofs;
the proofs of appendiB that the Young projection operators so constructed are
unique were given in refl[17.



Symmetric

Antisymmetric

V,V, = Vi & Vo2 & Vs D Va & Vi @ Ve & V7
Di : 2 1 2 _ 1 2 1 n2(n73)(n+l) 71,2(n+3)(71,71) 2 1 (71,271)(n274) (71,271)(n274)
imensions (n®—1) = +(n° = 1)+ o + 3 +(n®—1)+ K + K
F : 2 _ n(n—3) n(n+3) ne— ne—
Dynkinindices 2(n?*—-1) = 0 + 1 + > + - + 1+ == 4+ A
SU(3) example:
Dimensions 82 = 1 4+ 8 + 0 + 27 + 8 + 10 + 10
Indices 2-8 = 0 + 1 + 0 + 9 + 1 + 5/2 + 5/2
SU(4) example:
(101) ® (101) = (000) & (101) @ (020) @  (202) @ (101) @ (012) &  (210)
Dimensions 152 = 1 + 15 + 20 + 84 + 15 + 45 + 15
Indices 2-15 = 0 + 1 + 2 + 14 + 1 + 6 + 6
Projection operators
P=i)
P2 = m>—< Ps = %>—<

Aloayldnoio

TTOZ ‘8 Udy ‘T°0’6 UOISIDA

Ps = % { - - 2(n172) 71,(71,171)) C} P
P4:%{ + _2(n1+2) m) C} P7:%{ I - _%>—<}

I
wol=
—N
+
I
¥l

>_<_
>_<_

Table 9.4 SU(n), n > 3 Clebsch-Gordan series for ® A.
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Orthogonal groups

Orthogonal groupSO(n) is the group of transformations that leaves invariant a
symmetric quadratic fornty, ¢) = ¢,.¢"¢”

gwj:guu:u—(—o—)—v /L7U:172,...77’L. (101)
If (¢, ¢q) is an invariant, so is its complex conjugateq)* = ¢*”q,q., and
g’u'y = gl/'u' = u—)—o—(— Vv (10.2)

is also aninvarianttensor. The matrX = g,,, g must be proportionalto unity, as
otherwise its characteristic equation would decomposeéfiaingn-dimensional
rep. A convenient normalization is
gyagal[ — 5;
et = —— (10.3)
As the indices can be raised and lowered at will, nothing iseghby keeping the

arrows. Our convention will be to perform all contractionghwnetric tensors with
upper indices and omit the arrows and the open dots:

g“u =Hu V. (104)
All other tensors will have lower indices. For example, Liegp generator€r;),,”
from (4.37) will be replaced by

=J“’-—>(Ti)w=J--

The invariance conditior4(36 for the metric tensor

J_H_L

7o + (T; ) 9uo =0 (10.5)
becomes, in this conventlon, a statement thabién) generators are antisymmet-
ric:

L
(T3),,, =—(T3),,, - (10.6)
Our analysis of the reps &fO(n) will depend only on the existence of a sym-
metric metric tensor and its invertability, and not on itgezivalues. The resulting
Clebsch-Gordan series applies both to the comf@i@xt:) and noncompact orthog-
onal groups, such as the Minkowski gro8iP (1, 3). In this chapter, we outline the
construction ofSO(n) tensor reps. Spinor reps will be taken up in chafiter
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10.1 TWO-INDEX TENSORS

In section9.1we have decomposed tI5%¢/(n) 2-index tensors into symmetric and
antisymmetric parts. Fo§O(n), the rule is to lower all indices on all tensors, and
the symmetric state projection operatdrd) is replaced by

Suv,ps = Gpp' 9o’ Spvs”

1
(gwgw + GupGvo)

T

From now on, we drop all arrows amd”’s and write ©.4) as

-+ C

1 1
GuoGuvp = 5(9;1091/;) + gupgua) + §(g;wgup - gupgua) . (107)
The new invariant, specific t§O(n), is the index contraction:
T;LV,pU = GuvYpo 5 T= ) C . (108)

The characteristic equation for the trace invariant

- ) O C —nT (10.9)

yields the trace and the traceless part projection opex#ds3, (9.54). As T is
symmetric,ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition o$O(n) 2-index tensors is

traceless symmetric:

1 1 j [ 1
(P2)uu,pa = 5 (g;wgup + gupgua) - Eguugpa = - ED C )

(10.10)
singlet: (P1),,p0 = g,wg,,gz ) C. (10.11)

. . 1
antisymmetric: (P3) ., p0 = 5 (Gno9vp — GupGve) = I . (10.12)

The adjoint rep 9.57) of SU(n) is decomposed into the traceless symmetric and
the antisymmetric parts. To determine which of them is tive adjoint rep, we sub-
stitute them into the invariance conditiok)(5. Only the antisymmetric projection
operator satisfies the invariance condition

J-Lii

so the adjoint rep projection operator 180 (n

E}{ . I . (10.13)
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Young tableaux [ | x[ ] = o + H + [T]
Dynkin labels (10...) x (10...) = (00...) + (010...) + (20...)
Dimensions n? = 1 + oy %
n+2
n—2

Dynkin indices 2n—L = 0 + 1 + o
Projectors = %) C + I + { - %) C}

Table 10.150(n) Clebsch-Gordan series fof@ V.

The dimension 050O(n) is given by the trace of the adjoint projection operator:

N=trPs— :@. (10.14)

Dimensions of the other reps and the Dynkin indices (seésetts) are listed in
table10.1

10.2 MIXED ADJOINT & DEFINING REP TENSORS

The mixed adjoint-defining rep tensors are decomposed irsdhge way as for
SU(n). The intermediate defining rep state mailRX9.60 satisfies the character-

istic equation
R2:>—O—<:n;1R. (10.15)

The corresponding projection operators are
2
n—1 ’
2
n—1 ’

P, =

P, — _ (10.16)

The eigenvalue of) from (9.61) on the defining subspace can be computed by
inserting the adjoint projection operatdi0(13:

1
QR = i [ =3R. (10.17)

Q? is also computed by inserting@.13:

QQ:MZ%{<_?{}:%(1_Q)' (10.18)
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The eigenvalues are-1, l} and the associated projection operat8rd are

P,—P,- (1+Q) (1——R) (1+Q) = <1+Q—LR)
_2{+7<‘_n_1 } (10.19)
Py—P,t (1—2Q) {—2?{} . (10.20)

This decomposmon is summarized in talile.2 The same decomposition can be
obtained by viewing th&O(n) defining-adjoint tensors @ ® [J products, and
starting with theSU (n) decomposition along the lines of secti@r2.

10.3 TWO-INDEX ADJOINT TENSORS
The reduction of the 2-index adjoint rep tensors proceetts &/ (n). The annihi-

lation matrixR. (9.78 induces decomposition 0f(.11]) through (L0.12 into three
tensor spaces

2D C+f D00

On the antisymmetric subspace, the last term projects ewdfoint rep:

:I::ni2 +{I—ni2 } (10.22)

The last term in10.21) does not affect the symmetric subspace

OO0 0O
_1 {I} _I}} —0, (10.23)

because of the antisymmetry of tI$(n) generatorsd;;; = 0 for orthogonal
groups). The second term ih@.2J),

_ m _ %) C. (10.24)

projects out the intermediate symmetric 2-index tensoosgace. To normalize it,
we computg RS)?:

msy ):Hi 2D (5D C

4

(10.25)



Young tableaux

Dynkin labels
Dimensions
SO(3)

SO(4)

Projectors

o

(010...) x (100...)

n2 (n—1)
2

9

24

]

| N

—
+
Wl

O s @ .

(100...)  + (0010...) +
n + W "
3 + 1 +
4 + 4 +

|
no
—
+
Wl

T

(110...)

n(n2 —4)

[S)

+?<_% }

Table 10.250(n) A®V Clebsch-Gordan series.

Aloay1dnoio

TTOZ ‘8 |Udy ‘T°0°6 UOISIOA
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RS decomposes the symmetric 2-index adjoint subspace into

st (o<
- > 0 c}

P= = =2 )‘j]:(——) ('} aoz

Because of the antisymmetry of tf€(n) generators, the index interchange matrix
(9.77) is symmetric,

5Q=5Q°=Q

888 -

so it cannot induce a decomposition of the antisymmetriggabe in {0.29. Here
Q* indicates the diagram fa® with the arrow reversed. On the singlet subspace it

has eigenvalug:
. 8) (= %T . (10.28)

On the symmetric 2-index defining rep tensors subspaceagisealue is als%, as
the evaluation by the substitution of adjoint projectio@iors by {0.13 yields

QR = 81}: - %SR . (10.29)

Q? is evaluated in the same manner:

“RE T8

=550 Q). (10.30)

Thus,Q satisfies the same characteristic equation as0rnl@. The corresponding
projection operators decompose the symmetric subspaeéhitd term in (0.269)
into

P { ) T
Rt

IR R =Rl



Symmetric Antisymmetric
A®A = W @ Va 52 V3 @D Vi 53] Vs @D Ve
|
Young tableaux H X H = e + []] + + + H + ]
Dynkin labels  (010...x(010...) = (00...) + (20...) + (02...) + (00010...) + (010...) + (1010...)
Dimensions 7L2(7L471)2 — 1 + (7L—1)2(7L+2) + (7L73)7L(71L;1)(7L+2) + 7L(7L71)(72LZ2)(7L73) + 7L(7L271) + n(n+2)(n—1)(n—3)
SO(3) 9 = 1 + 5 + 0 + 0 + 3 o+ 0
SO(4) 36 = 1 + 9 + 10 + 1 + 6 f 9
SO(5)=Sp(4) _100 = 1 + 14 + 35 + 5 + 10 + 35
SO(6)=SU(4) 225 = 1 + 20 + 84 + 15 + 15 o+ (45+45
SO(7) 441 = 1 + 27 + 168 + 35 + 21 o+ 189
SO(8) 784 = 1 + 35 + 300 + 70 + 28 o+ 350
SO(9) 1296 = 1 + 44 + 495 + 126 + 36 4 594
SO(10) 2025 = 1 + 54 + 770 + 210 + 45 + 945
Projection operators
Pimzn ) (. eo-3{ T[] - 8: |
r-en{ (1Y - () Poe s v
r-3{ [+ 8 }—ﬁ)j]i+m) Cor- |

Table 10.3 SO(n), n > 3 Clebsch-Gordan series fet® A.

Aoayldnoio

TTOZ ‘8 |Udy ‘T°0°6 UOISIOA
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This Clebsch-Gordan series is summarized in tabl&

The reduction of 2-index adjoint tensors, outlined abosepatterned after the
reduction forSU (n). Another, fully equivalent approach, is to consider fi@(n)
2-index adjoint tensors as ® — products and start from the decomposition of
section9.5. This will be partially carried out in sectiot0.5

10.4 THREE-INDEX TENSORS

In the reduction of the 2-index tensors in sectlidhl, the newSO(n) invariant
was the index contractiori(.9. In general, for a multi-index tensor, ti$é/ (n) —
SO(n) reduction is due to the additional index contraction iremats. Consider the
fully symmetric 3-indexSU (n) state in tabl®.1 The newSO(n) invariant matrix

on this space is
R— M . (10.33)

This is a projection onto the defining rep. The normalizat@lows from

S o )

Therrrep ofSU ) thus splits into

HE n+2 {HE n+2 } (10-39)

On the mixed symmetry subspace in tabl& one can try various index contraction
matricesR;. However, their projectionB,R,;P- are all proportional to

j]__IJ ?]I (10.36)

The normalization is fixed by

E - g(n —1) , (10.37)

and the mixed symmetry rep 6fU (n) in (9.12 splits as

IR
Nt

The other mixed symmetry rep in tabel splits in analogous fashion. The fully
antisymmetric space is not affected by contractions, as

EF =0 (10.39)

by the symmetry of,,,,. Besides, a@ is the adjoint rep, we have already performed

theH ® [] decomposition in the preceding section. The full Clebsandan series
for the SO(n) 3-index tensors is given in table.4




AQV

VeveV Vi @ Va @ Vs @ Vi @ Vs @ Ve @ V7
Young tableaux x [2] x = (11 + ] + + ] + + [] + @
Dynkin labels (30...) + (10...) + (110...) + (10. + (110...) + (10...) + (0010...)
Dimensions nS - (nfl)g(ruk/l) + n + n(nzf/l) + n + n(nzf/l) + n + 'n,('n,flg('n,72)
SO(3) 27 = 7 + 3 + 5 3 5 3 1
SO(4) 64 = 16 + 4 + 16 4 16 4 4
Projection operators

Table 10.450(n) Clebsch-Gordan series fof@ V@ V.

Aoayldnoio

TTOZ ‘8 |Udy ‘T°0°6 UOISIOA
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10.5 GRAVITY TENSORS

In adifferentapplication of birdtracks, we now change #imgjuage and construct the
“irreducible rank-four gravity curvature tensors.” Thedirack notation for Young
projection operators had originally been invented by Pemfo31] in this context.
The Riemann-Christoffel curvature tensor has the follgrggmmetries§37):
Rapys=—Rpays
Rapys = Rysap (10.40)
Raogys + Rgyas + Ryaps =0 .
Introducing birdtrack notation for the Riemann tensor
a ~—
B ~——

y —
5—""

we can state the above symmetries as

==—=ha (10.42)

R % R |, (10.43)
R+ R 4= R |—0. (10.44)

The first condition says that lies in H ® H subspace. We have decomposed this
subspace in table.2. The second condition says thaties inH > H interchange-

Rapys = R, (10.41)

symmetric subspace, which splits irt] andE subspaces:

CE 3@ FFE  we

The third condition says thdt has no componentsin tl%pace:

E R +E R +ﬁ R BE R |=0. (10.46)

Hence, the Riemann tensor is a p@ tensor, whose symmetries are summarized

by theB} rep projection operato?B1]:

a o
-1 4 Y
5 5

(PrR)agys = (Pr)agys’ V%Y Rargrysr = Ragos

EsE L = coan
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This compact statement of the Riemann tensor symmetritgsyimmediately the

number of independent componentsRfs.s, i.€., the dimension of thgﬂ reps

in table9.2

n%(n? —1)
12

The Riemanntensor has the symmetries o@ep ofSU (n). However, gravity is

also characterized by the symmetric tenggy, thatinduces loca# O(n) invariance
(more precisely5O(1,n — 1), but compactness is not important here). The extra
invariants built fromg,z's decompos&U (n) reps into sums o§O(n) reps.

TheSU (n) subspace, correspondin@, is decomposed by th&O(n) inter-
mediate 2-index state contraction matrix

Q- E | 050

The intermediate 2-index subspace splits into three icixdiel reps by {0.17)-
(10.12:

B i

The Riemann tensor is symmetric under the interchange ekipdirs, so the anti-
symmetric 2-index state does not contribute

PrQ4 =0. (10.52)
The normalization of the remaining two projectors is fixed dpmputation of

$.Qf:
2
P 3 €C (10:59)
v PE &) o

This completes th&€O(n) reduction of the-|-| SU (n) rep (10.48:

dR =tr PR = (1049)

SU(n) — SO(n)

H} - B} + [T + o0

Pr = Pw + Ps + Po  (10.55)
n2(q2271) — (n+2)(n41~21)n(n73) + (n+2)2(n71) + 1

Here the projector for the tracel%g tensor is given by, = Pr — Pg — Py

szgﬁ—nigm+m3€'

(10.56)
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The above three projectors project out the standard rijatansors:

Curvature scalar:

R— _@ R = RH,” (10.57)

Traceless Ricci tensor:

1 1
R;LV - EgMVR = _é R |+ E) @ R (1058)

Weyl tensor:
C)\Nl/hi = (PWR))\NVN

4 2
R _n—2:l:l>z R +(n—1)(n—2)§ @ R

1
2 (
1
(n—1)(n—2)
The numbers of independent components of these tensor#varelyy the dimen-

sions of corresponding subspaces10.65. The Ricci tensor contributes first in
three dimensions, and the Weyl tensor first in four, so we have

’;U

AUVEK + gMUR)\H g)\l/Rp,H - gMNR)\V + g)\HRNV)

(g)\rgg,uu - g)\ug,urc)R . (1059)

(POR)MWN = %(gAug;m - gknguu)R

g)\uRuﬁ - guuR)\/f + g,mRAV — gMRW (1060)
_%(g)\ugwi - gkﬁg;LV)R .

The last example of this section is an application of bircksato general relativity

index manipulations. The objectis to find the characterezjuation for the Riemann
tensor infour dimensionsWe contract®.24) with two Riemann tensors:

n=2: Ryux
n=3:

0= R . (10.61)

R

Expanding with 6.19 we obtain the characteristic equation

0_244 ﬂ

+2R_JEL_{7_2 R|V. (1062

For example, this identity has been used by Aéleal., eq. (E2) in ref. f].
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10.6 SO(n) DYNKIN LABELS

In general, one has to distinguish between the odd- and te-@wnensional or-
thogonal groups, as well as their spinor and nonspinor tejpisis chapter, we study
only the tensor reps; spinor reps will be taken up in chapier

For SO(2r +1) reps there are Dynkin labels(aias . . .a,—1Z). If Z is odd, the
rep is spinor; ifZ is even, it is tensor. For the tensor reps, the correspondingg
tableau in the Fischler notationf7 is given by

Z
(alag...ar_lZ) — (alag...ar_lgoo...) . (1063)

For example, foiSO(7) rep (102) we have

(102) — (1010...) = @j (10.64)

For orthogonal groups, the Levi-Civita tensor can be usedtwert a long column
of k boxes into a short column ¢2r 4 1 — k) boxes. The highest column that cannot
be shortened by this procedure hdsoxes, where is the rank ofSO(2r + 1).

For SO(2r) reps, the last two Dynkin labels are spinor roots
(araz...a,—2Y Z). Tensor reps hav® + Z = even. However, as spinors are
complex, tensor reps can also be complex, conjugate repg balated by

(alag...YZ) = (a1a2...ZY)* . (1065)
ForZ >Y, Z +Y even, the corresponding Young tableau is given by
Z-Y

(alag .. .aT_QYZ) — (alag R P 5 00.. ) . (1066)

The Levi-Civita tensor can be used to convert long columtwsshort columns. For
columns ofr boxes, the Levi-Civita tensor spli€3(2r) reps into conjugate pairs of
SO(2r) reps.

We find the formula of King 191] and Murtaza and Rashid$7 the most con-
venient among various expressions for the dimensiorf&(fn) tensor reps given
in the literature. If the Young tablealis represented as in secti®r8, the list of the
row lengthg A1, Ao, . .. \,], then the dimension of the correspond$@(n) rep is
given by

N+n—k—i—-1) .
H TR jl;[l()\l—i—)v—i-n—z—j). (10.67)

Herep is the totaI number of boxes, add is the dimension of the symmetric group
rep computed ind.16. ForSO(2r) andx = r, this rep is reducible and splits into
a conjugate pair of reps. For example,

n(n? — 4)

d—_ _
=—— - -(n+2)n(n—-2) = 3

(10.68)
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in agreement with0.55. Even though the Dynkin labels distinguiSio (2r + 1)
from SO(2r) reps, this distinction is significant only for the spinorsephe tensor
reps ofSO(n) have the same Young tableaux for the even and theutxdd
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Chapter Eleven

Spinors

P. Cvitanovit and A. D. Kennedy

In chapterl0 we have discussed the tensor reps of orthogonal groups. \1dowe
the spinor reps o6O(n) also play a fundamental role in physics, both as reps of
space-time symmetries (Pauli spin matrices, Dirac gammntaiagas, fermions in
D-dimensional supergravities), and as reps of internal sgiries(SO(10) grand
unified theory, for example). In calculations of radiativerections, the QED spin
traces can easily run up to traces of products of some twelrenta matrices![94,

and efficient evaluation algorithms are of great practicglartance. A most straight-
forward algorithm would evaluate such atrace in sdrilé= 11-9-7-5-3 ~ 10, 000
steps. Even computers shirk such tedium. A good algorithich sis the ones we
shall describe here, will do the job in sorfe~ 100 steps.

Spinors came to Cartari§] as an unexpected fruit of his labors on the complete
classification of reps of the simple Lie groups. Diréé€][rediscovered them while
looking for a linear version of the relativistic Klein-Gard equation. He introduced
matricesy,,, which were required to satisfy

(Povo +pimi +..)2 = (g —pi —p3 —-..) - (11.1)
Forn = 4 he constructed’s as[4 x 4] complex matrices. Fo¥O(2r) andSO(2r +
1) v-matrices were constructed explicitly @8 x2"] complex matrices by Weyl and
Brauer p44.

In the early days, such matrices were taken as a literal ,tartd Klein and
Nishina [L9€] are reputed to have computed their celebrated Quantuntr&te
namics crosssection by multiplyingmatrices by hand. Every morning, day after
day, they would multiply away explicit [44] v, matrices and sum over's. In the
afternoon, they would meet in the cafeteria of the Niels Boltitute to compare
their results.

Nevertheless, all information that is actually needed foin $races evaluation
is contained in the Dirac algebraic conditiohl(1), and today the Klein-Nishina
trace over Dirag’s is a textbook exercise, reducible by several applicatimithe
Clifford algebra condition on-matrices:

Yoy = 1 =29 1. (11.2)
Iterative application of this condition immediately yisld spin traces evaluation
algorithm in which the only residue efmatrices is the normalization factar1.
However, this simple algorithm is inefficient in the sensatti requires a com-
binatorially large number of evaluation steps. The mostieffit algorithm on the
market (for anySO(n)) appears to be the one given by Kenned$5 81]. In
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Kennedy'’s algorithm, one views the spin trace to be evatlasea3n-j coefficient.
Fierz [L2(] identities are used to express this-; coefficient in terms o6-; coef-
ficients (see sectioh1.3. Gamma matrices ar@™/? x 2"/2] in even dimensions,
[2(n=1)/2 x 2(»=1)/2] in odd dimensions, and at first sight it is not obvious that a
smooth analytic continuation in dimension should be pdedir spin traces. The
reason why the Kennedy algorithm succeeds is that spinereeatly not there at
all. Their only role is to restrict th&O(n) Clebsch-Gordan series to fully anti-
symmetric reps. The correspondiBg and6-j coefficients are relatively simple
combinatoric numbers, with analytic continuations in terof gamma functions.
The case of four spacetime dimensions is special becaudee aktlucibility of
SO(4) to SU(2) ® SU(2). Farrar and Neri{15, who as of April 18, 1983, have
computed in excess of 58,149 Feynman diagrams, have usestithcture to de-
velop a very efficient method for evaluatirty)(4) spinor expressions. An older
technique, described here in sectibh.§ is the Kahane 17§ algorithm, which
implements diagrammatically the Chishol&t] identities. REDUCE, an algebra
manipulation program written by Hearf g9, uses the Kahane algorithm. Thorn-
blad [324] has usedSO(4) € SO(5) embedding to speedup evaluation of traces
for massive fermions.

This chapter is based on re&1].

11.1 SPINOGRAPHY

Kennedy [.85 introduced diagrammatic notation formatrices

u
(vu)ab_ 9 a/7b: 1721"'12n/2 or 2(”‘71)/2
a-<---- b
lab—a”’<”” b7 n = 1’27 1
&
tri=" . (11.3)

In this context, birdtracks go under the name “spinogrdptor. notational simplic-

ity, we take ally-indices to be lower indices and omit arrows on thdimensional
rep lines. Ther-dimensional rep is drawn by a solid directed line to conftorihe
birdtrack notation of chapter For QED and QCD spin traces, one might prefer the
conventional Feynman diagram notation,

u

(V")ab = ) _L_ K

where the photons/gluons are inthelimensional rep af O(3, 1), and electrons are
spinors. We eschew such notation here, as it would conflitt $d(n) birdtracks
of chapterl0. The Clifford algebra anticommutator conditiohl(2) is given by

uoov [VERERY)
H - U (11.4)
<t -
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For antisymmetrized products gfmatrices, this leads to the relation
123 p 12 p 12 p

It

(we leave the proof as an exercise). Hence, any produgtroftrices can be ex-
pressed as a sum over antisymmetrized producisroftrices. For example, sub-
stitute the Young projection operators from fig@ré into the products of two and
threey-matrices and use the Clifford algebfdl(4):

lJ = LY (11.6)

1], 1#,- 1.

HYL Y Y e e

Only the fully antisymmetrized products ofs are immune to reduction by.{.4).
Hence, the antisymmetric tensors

(11.5)

F(O) = 1 = <€------ = 0
7(777———
u

1 _ - —

FL) = M - - !
,( ,,,,,, 7(,,,,,,
[TRERY

2

I S = T
<L --J-- €---7---
Hvo

1—‘(3) - = = 3

nro Vv Vo)
1 €---7---
IJl '“a

) _ - . = a

HAV2.. g Y Yz« - Va)
- < -5

provide a complete basis for expanding products-ofiatrices. Applying the anti-
commutator {1.4) to a string ofy’s, we can move the first all the way to the right

T

123 p 123 p

[ TR )-

1<
2
<
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<---t--1- < - T <-4t
%(7#1,}/#2“.,)/#;7 :tryﬂ2...,yﬂpryﬂl):
gH1H2,YH3 ...,-yl"p _gulus,},m,},up + ... (11.10)

This identity has three immediate consequences:
(i) Traces of odd numbers afs vanish forn even.
(i) Traces of even numbers afs can be evaluated recursively.
(iii) The result does not depend on the direction of the spline.

According to (L1.10, any~y-matrix product can be expressed as a sum of terms
involving g,,,,’'s and the antisymmetric basis tensbfe), so in order to prove (i) we
need only to consider traces Bf*) for a odd. This may be done as follows:

1..a
n»% b= »:« =C
—2av -Q
- - \A\, — -
1. a
=Mn—-a)v 1=0. (11.11)

In the third step we have used(.1Q and the fact that is odd. Hencetr I'()
vanishes for all odd if n is even. Ifn is odd,tr '™ does not vanish because by

(6.29,
12 n
Mt — 112
A (”l”

Then-dimensional analogue of thg,
o N (11.13)

commutes with all-matrices, and, by Schur’s lemma, it must be a multiple of the
unit matrix, so it cannot be traceless. This proves {i).. {0 relates traces of length
p to traces of length — 2, so (i) gives

PN PR SN
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tr v,y = (tr1) g, (11.14)

K o G U O
N<«/ _,,4\\\{\/ - >< N ) (}
N U
\Y o)
tr 7;L7V’7p'70:tr 1 {g;wgpa — 9upGvo + g;u/gllp} ) (1115)

20C-

'
\

N = <
- %Jr X (11.16)
BT

+’ju(\_’j +,\L»} , etc.

The result is always th@p — 1)!! ways of pairing2p indices withp Kronecker
deltas. Itis evident that nothing depends on the directfapmor lines, as spinors
are remembered only by an overall normalization factdr. The above identities
are in principle a solution of the spinor traces evaluatimbfem. In practice they
are intractable, as they yield a factorially growing numdigterms in intermediate
steps of trace evaluation.

\4/ ,4\\"{

>€<>I
>K>5<>

11.2 FIERZING AROUND

The algorithm (1.1 is too cumbersome for evaluation of traces of more than
four or sixy-matrices. A more efficient algorithm is obtained by goinghe I"
basis (1.9. Evaluation of traces of two and thrégs is a simple combinatoric
exercise using the expansiaril(19. Any term in which a pair of;,,,, indices gets

antisymmetrized vanishes:
Hﬁ =0. (11.17)

That implies thal™’s areorthogonal

L& P SN
“a| b =dgpall ) a_ . (11.18)

Herea! is the number of terms in the expansidni (1§ that survive antisymmetriza-
tion (11.18. A trace of thred™s is obtained in the same fashion:

\4// alble!

; sltlu!
2]

1 1 1
—§(b—|—c—a), L‘—g(c—i—a—b)7 u-§(a+b—c).
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As thels provide a complete basis, we can express a product of tmatrices as
a sum oveis, with the extra indices carried hy,,’'s. From symmetry alone we
know that terms in this expansion are of the form

(11.19)

The coefficients”,,, can be computed by tracing both sides withand using the
orthogonality relationX1.19:

¢ N N
- ,(\

R 1 ) ;

N _gc!trl H '
7(,,/ SR 7( ,,,,,,,,,

Cc
We do not have to consider traces of four or mbBig as they can all be reduced to
threel traces by the above relation.
Let us now streamline the birdtracks. The orthogonality’sf(11.19 enables us
to introduce projection operators

(11.20)

(Pa)eder == (ua Wz = Vel g (V727" ) g
1 d-« - € 1 <«
,—Y (/\i,\ = ~ ra ! . (11.21)
SRR ST

The factor oftr 1 on the left-hand side is a convenient (but inessential) adination
convention. It is analogous to the normalization faetan (4.29:

L c
& P (r)s——. (11.22)

\

With this normalization, each spinor loop will carry factor 1), and the final
results will have nar 1 factors.a, b, . . . are rep labels, not indices, and the repeated
index summation convention does not apply. Only the fulliisgmmetricSO(n)
reps occur, so a single integer (corresponding to the nuofti®xes in the single
Young tableau column) is sufficient to characterize a rep.

For the trivial and the single-matrix reps, we shall omit the labels,

S s A ;77 S s A ;77
O N VA (11.23)

7 \ / \ ) / \ / \ 3

e O Ty B S
in keeping with the original definitionsl(.3. The 31" trace (L1.19 defines a 3-

vertex
a b a b
Y 1 \4/
L (11.24)

<.

\ N
c R
c
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that is nonzero only itz + b + ¢ is even, and ifa, b, andc satisfy the triangle
inequalitie§a — b| < ¢ < |a+ b|. We apologize for using, b, ¢ both for theSO(n)
antisymmetric representations labels, and for spinocislin (L1.3), but the Latin
alphabet has only so many letters. It is important to noteithtnis definition the
spinor loop runs anticlockwise, as this vertex can changewsnder interchange of
two legs. For example, byi (.19,

T_C

kA

This vertex couples three adjoint representatidits {3 of SO(n), and the sign
rule is the usual rule(46 for the antisymmetry of’; ;. constants The general sign
rule follows from (L1.19:

a b a b

T = (—1)stHtutus Y . (11.26)

The projection operatoi8, (11.21) satisfy the completeness relatidn):

1 >4
=< - 11.27
,,,,, P 42@3 \‘ ( )
This follows from the completenessb‘é, used in derivingl1.20. We have already

drawn the left-hand side ofL(.20 in such a way that the completeness relation
(11.27% is evident:

,(,,/ [N
In terms of the vertexi(1.24 we get

a b b
w => . (11.28)

C
,( c ,‘,, - —
Inthis way we can systematically replace a string-ofiatrices by trees of 3-vertices.
Before moving on, let us check the completenes®gf P, projects spinor
® antispinor— antisymmetrica-index tensor rep o5O(n). Its dimension was

computed in§.21):

1 an a_ n
dy = tr P, trl%_@)_ (a) (11.29)
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d, is automatically equal to zero far< «; this guarantees the correctness of treating
(11.28 as an arbitrarily large sum, even though for a gimetterminates at. = n.
Tracing both sides of the completeness relatioh 27, we obtain a dimension sum
rule:
2 n n n

(tr1) —za:da—;)(a) =(14+1)"=2". (11.30)
This confirms the results of Weyl and Braue#[J: for even dimensions the number
of components i2", soIs can be represented by complek/? x 2"/2] matrices.
For odd dimensions there are two inequivalent spinor rgpesented bj2("—1)/2x
2(n=1)/2] matrices (see sectidrl.7). This inessential complication has no bearing
on the evaluation algorithm we are about to describe.

11.2.1 Exemplary evaluations

What have we accomplished? Iterating the completenesoreld 1.29 we can
make~-matrices disappear altogether, and spin trace evaluaghurces to combi-
natorics of 3-vertices defined by the right-hand sideldf.{9. This can be done,
but is it any quicker than the simple algorithh1(1§? The answer is yes: high
efficiency can be achieved by viewing a complicated spireteeca3n-j coefficient
of section5.2 To be concrete, take an eigitmatrix trace as an example:

<~

tr (VYo Ya¥8 Y VAP YY) = fj:Cl. (11.31)

Such a3n-j coefficient can be reduced by repeated application of theupging
relation 6.13

oy - piv (11.32)
b

In the present context this relation is known as the Fierntite[12(. It follows
from two applications of the completeness relation, a5ihd. Now we can redraw
the12-5 coefficient from (1.3 and fierz on

= b . (11.33)
E=KS
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Another example is the reduction of a vertex diagram, a sppease of the Wigner-
Eckart theoremH.24):

a (11.34)

_ b c alg
o <
bed /\,albalC AN

d/2 / \ S
R N RN (11.35)
A,—\.\A,’/—\\L A
b,c,d b c\ /r b o]

In this way, any spin trace can be reduced to a sum 6veand3-; coefficients.
Our next task is to evaluate these.

11.3 FIERZ COEFFICIENTS

The 3-j coefficient in ((1.33 can be evaluated by substitutingl(19 and doing
“some” combinatorics

alble! 1 n!
= . 11.36
i‘ (sltlu)? slthul (n — s —t —u)! ( )

s,t,u are defined in11.19. Note thatu + b+ ¢ = 2(s + t + u), anda + b+ cis
even, otherwise the traces in the above formula vanish.

The6-j coefficients in the Fierz identityl(L.32 are not independent of the above
3-j coefficients. Redrawing@:; coefficient slightly, we can apply the completeness
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relation (L1.28 to obtain

a
Fﬂéx g 1 LR/
ro_ - \ - \ I /( \ , \ /"
PR oo / \‘ S . N
b wo)c b

Interchanging andk by the sign rule {1.26, we express thé-;j coefficient as a
sum ove3-j coefficients:

/}:Hé\\\ _ ’\/(\\’Z(_l)stﬂ-tu-ﬁ-usa@. (11.37)

Cc c

Using relationg = a —u,s =b—u,a+t+u =a+ b — u, we can replacelf]
the sum over by the sum ovet:

%& = (—1)a (z) PEIK (Z) (Z:Z) . (11.38)

u

u ranges frond) to a or b, whichever is smaller, and tie;’s for low values ofa are
particularly simple

a

1 1 @
— B == P =da, (11.39)
.0 ey

1y .
— /0 = (=) - 2a)d, (11.40)
CoTd

R (n—2a)?>—n

clay, —

— L = (11.41)
| ) 2

Kennedy [.85 has tabulated Fierz coefficients]0, 279, 279 Fp, b, ¢ < 6. They
are related t@-j’s by

[

b
bl 1 —— b! a\(n—a

Fpe=—— " n/ = (=1)c= —1) ) 11.42

b cld, *Hb (=1) c! a:O( ) <u> <b—u) ( )

11.46-5 COEFFICIENTS

To evaluate 11.35 we needs-j coefficients for six antisymmetric tensor reps of
SO(n). Substitutions11.24, (11.2)), and (1.19 lead to a strand-network 1]
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expression for &-j coefficient,

s
as
_ T (a)!
6 12, (55"

Pick out aline in a strand, and follow its possible routestigh the strand network.
Seven types of terms give nhonvanishing contributions: founi tours”

~—

(11.43)

(11.44)

(11.45)

ishing contribution to thé-; coefficient (1.43 corresponds to a partition of twelve
strandsgsy, so, ..., s12 INt0o seven tours,, to, ..., t7

(11.46)

Comparing with {1.43, we see that each is a sum of twot;’s: s; = to + t7,
s9 = t1 + t7, etc.ltis sufficient to specify oné;; this fixes allt;'s. Now one stares
at the above figure and writes down

n\ ot T2, s
M(tl)_() = 7 , t=ti+ta+.. .+t (11.47)
t) 1Lz ti! Hj:l a;!

(a well-known theorem states that combinatorial factorsmicabe explainedi[67).

The () factor counts the number of ways of colorifgt ¢2 + . . . + ¢7 lines with

n different colors. The second factor counts the number dingispartitions oft
lines into seven strands, s . . ., t7. The last factor again comes from the projector
operator normalizations and the number of ways of colorauhestrand and cancels
against the corresponding factor ih1(43. Summing over the allowed partitions
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(for example, takind) < ¢; < s5), we finally obtain an expression for ttie;

coefficients:
A5 ()t
~\ Vot it Ve a1t

a3 p t ) t1!ltaltsltltsltg! 7!
t1:—a1+a22+a3+t t5:a1+a3;a4+a6—t
t2:—a1+a25+a6+t t6:a1—|—a2—;—a4+a5_t
t3:_a2+a4+a6+t t7:a2+a3+a5+a6_t

2 2
ta :_MH. (11.48)

2

The summation inX1.49 is over all values of, such that all the; are nonnegative
integers. The3-j (11.39 is a special case of th&j (11.4§. The3-j’s and6-j's
evaluated here, for all reps antisymmetric, should suffiamost applications.

The above examples show how Kennedy’s method produces-tlimensional
spinor reductions needed for the dimensional reguladndtic ). Its efficiency pays
off only for longer spin traces. Eachrpair contraction produces orge; symbol,
and the completeness relation sums do not exceed the nuifriesr oontractions,
so for2p y-matrices the evaluation does not excpédteps. This is far superior to
the initial algorithm (1.19.

Finally, a comment directed at the reader wary of analyticantinuing inn
while relying on completeness sums (de Wit and 't Hoéft,[304] anomalies).
Trouble could arise if, as we continued to lawthek > ntermsin the completeness
sum (L1.27 gave nonvanishing contributions. We have explicitly wotkat the
dimension3-j and6-; coefficients do vanish for any repkf> n. The only danger
arises from the Fierz coefficientsl.32: a ratio of6-j andd can be finite forj > n.
However, one is saved by the projection operator in the Fdnatity (11.39. This
projection operator will eventually end up in sog or 3-5 coefficient withoutd
in the denominator (as il (.33), and the whole term will vanish fdr > j.

11.5 EXEMPLARY EVALUATIONS, CONTINUED

Now that we have explicit formulas for &t and6-j coefficients, we can complete
the evaluation of examples commenced in seclibr2.1 The eighty-matrix trace
(11.33 is given by

2

L2
A A

X (=le (7)o
Y/

=n+n(n—1)(n—4)?, (11.49)

}
2
<.
1d

'
\
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and the teny-matrix trace (1.35 by

1
N

N 2
/» \

%8\ il }45\ * 5\
Na» do,\/ ! S\ d2/

P N
dodg' \‘, da )
)

=n —|—n(n—1)( —4)? —2n*(n —1)(n — 4
—n(n—1)(n —2)(n — 4)
=n®—n(n—1)(n—4)(n* — 5n +12). (11.50)

11.6 INVARIANCE OF y-MATRICES

The above discussion of spinors did not follow the systemagaproach of sectioh 4
that we employ everywhere else in this monograph: start aitt of primitive in-
variants, find the characteristic equations they satisfystruct projection operators,
and identify the invariance group. In the present case, timifve invariants are
9w 0ap @NA(7y,,)as. We could retroactively construct the characteristic ¢éiguéor
Qab.cd = (V) ad(7,)er from the Fierz identity 11.32, but the job is already done
and then eigenvalues are given b$1.39—(11.41. The only thing that we still need
to do is check thatO(n), the invariance group af,,., is also the invariance group
of (Vu)ab-

The SO(n) Lie algebra is generated by the antisymmetric projectioeraior
(8.7), or I'® in the v-matrix notation {1.9. The invariance conditior4(36) for

~-matrices is
J‘ - \+ — kI? =0. (11.51)

To check whetheF(?) respects the invariance condition, we evaluate the first and
the term by means of the completeness relatidnZ9:

i I

The minus sign comes from the sign rulel (29. Subtracting, we obtain
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This already has the form of the invariance conditidh.6 1), modulo normalization
convention. To fix the normalization, we go back to definiidil.8, (11.29,

(11.19:
R S
—l- b e D

The invariance conditiorl(L.51) now fixes the relative normalizations of generators
in then-dimensional and spinor rep. If we tak& 1) for then-dimensional rep

(Tu)or = > :: I Z , (11.53)

then the normalization of the generators in the spinor rep is

1 1
(Tyw)ab = 1 H = g['y,,,w] : (11.54)
a-<---t-- b
The~-matrix invariance conditionl(l.51) written out in the tensor notation is
1
[T+ o] = 5 (Guot = o) - (11.55)

If you prefer generator&l;),,, indexed by the adjoint rep index= 1,2,..., N,
then you can use spinor rep generators defined as

(Ti)ab = J . A . (11.56)
a---<--- b 4a~ --4--b

Now we can compute various casimirs for spinor reps. For @@nthe Dynkin
index (sectiory.5) for the lowest-dimensional spinor rep is given by

A 313
oo w2 (11.57)

@ 8n—2) n-—2

From the invariance of,, follows invariance of all’®), In particular, the invari-
ance condition fof'(?) is the usual Lie algebra conditiod.47 with the structure
constants given byl(.25.

11.7 HANDEDNESS

Among the based (.9, Ff[f),tz,,,,tn is special; it projects onto a 1-dimensional space,
and the antisymmetrization can be replaced by a pair of Civita tensors§.29):

12 1 2N

rm = H (11.58)
T m

— — - (,
The corresponding clebsches are the generalizgdhatrices,

| | | | T (11.59)
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The phase factor is, as explained in secdo®) only a nuisance that cancels away
in physical calculationsy* satisfies a trivial characteristic equation (uUse8 and
(11.18 to evaluate this),

v T -
(v*)? = o -1 T = , (11.60)
which yields projection operatorg.(9:
1 1
P, = 5(1 ++%), P_= 5(1 — ). (11.61)

The reducibility of Dirac spinors does not affect the cotness of the Kennedy
spintraces algorithm. However, this reduction of Diraoeps is of physical interest,
so we briefly describe the irreducible spinor reps. Let uotkethe two projectors
diagrammatically by

1=P, +P_
e e (11.62)
In even dimensions,y* = —v*~,,, while in odd dimensions,y* = v*v,, SO
WPy = Py
n even: , (11.63)
I N [t I
WP+ = Piy
n odd: . (11.64)
I - I

Hence, in the odd dimensions Dirgg matrices decompose into a pair of conjugate
[2(n=1)/2 % 2(n=1)/2] reps:

nodd: v, =P, y,PL+P_~,P_, (11.65)
and the irreducible spinor reps are of dimensigi1)/2,

11.8 KAHANE ALGORITHM
For the case of four dimensions, there is a fast algorithntréare evaluation, due

to Kahane179.
Consider ay-matrix contraction,

YW Ye - VdVa = g“,« (11.66)

and use the completeness relatid)m.QD and the “vertex” formulaX1.39:
A 5

\_J
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,4_
SO

: .
— Z A (11.67)

Cove L dy b

Forn = 4, this sum ranges ovér = 0, 1,2, 3, 4. A spinor trace is honvanishing
only for even numbers of's, (11.16, so we distinguish the even and the odd cases
when substituting the Fierz coefficientisl(40:

- IR

(u__?{J :us} (11.69)
s I

Al :T{ : - :\‘M } (11.69)

- O’ /\\d/\' ”””” D

The sign of the second term iA1.69 can be reversed by transposing the three
~’'s (remember, the arrows on the spinor lines keep track afssitf. (11.24 and

(11.29):

How o e

But now the term in the brackets in1.69 is just the completeness suhl(27,
and the summation can be dropped:

odd N )

__%{u +<}
< coo < <
(11.71)
-
Rule 1: = =2 "/

,( L N — ,(,:’\/\,,,

-/
YWYe - VdVa = —2%d---Ve Vo

The same trick does not work fot1.69, because there the completeness sum has
three terms:

1 i \) ' ) ! )
o B o T L S B P 11.72
« H| _ *{ - I M4} ( )
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However, asyj,7y) = — VpYVa)
e G
H . H , (11.73)
do Jdo
the sum ofy,7s . . . 74 and its transposey . . . 17, has a two-term completeness

| _oven, ) I/I:'g| ],I:';|

H| RS { o +:\‘M4'/} : (11.74)

Finally, we can change the sign of the second terrﬁinﬁ(g by using{~s, 7.} = 0;

even |
Rule 2: J| I :2{ "
,( —— (, — - - — - \>
’Ye'Ya'Yb CYYdYe =2 {’Yd’)/a'}/b e Ye Ve ’Yb’)/a'}/d} . (1175)

This rule and rule {1.7]) enable us to remove-contractions (“internal photon
lines”) one by one, at most doubling the number of terms at st&p. These rules
are special ta = 4 and have na-dimensional generalization.
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Symplectic groups

Symplectic groupSp(n) is the group of all transformations that leave invariant a
skew symmetri€p, ¢) = fapp®q":

Jab=— fra a,b=1,2,...n
PR Gt n even. (12.1)

The birdtrack notation is motivated by the need to distisptine first and the second
index: it is a special case of the birdtracks for antisyminéénsors of even rank
(6.57). If (p, q) is an invariant, so is its complex conjugdteq)* = f**p.qs, and

fab — fba
= B ——— (12.2)

is also an invarianttensor. The matrd} = f,.f® mustbe proportional to unity, as
otherwise its characteristic equation would decomposédfiaingn-dimensional
rep. A convenient normalization is
fac.be = 53
v =— —v—h—¢ = — ———. (123)
Indices can be raised and lowered at will, so the arrows @slgan be dropped.
However, omitting symplectic invariants (the black trite®) is not recommended,

as without them it is hard to keep track of signs. Our coneentiill be to perform
all contractions withf%® and omit the arrows but not the symplectic invariants:

fab - a—v—b . (124)

All other tensors will have lower indices. The Lie group geters(T;), will be

replaced by
(Ti)ab = (Ti)acfcb = J_V_ . (125)

The invariance conditiord(36 for the symplectic invariant tensor is

AN

(Ti)acfcb + fac(Ti)cb =0. (126)

A skew-symmetric matrix,;, has the inverse inlQ.3 only if det f # 0. That is
possible only in even dimensions{1, 144], soSp(n) can be realized only for even
n.
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In this chapter we shall outline the constructionf(n) tensor reps. They are
obtained by contracting the irreducible tensor§ ©f(n) with the symplectic invari-
ant f%* and decomposing them into traces and traceless parts. Phesemtation
theory forSp(n) is analogous in step-by-step fashion to the representttenry
for SO(n). This arises because the two groups are related by supesyynand
in chapterl3 we shall exploit this connection by showing that all grohpdretic
weights for the two groups are related by analytic contilmneinto negative dimen-
sions.

12.1 TWO-INDEX TENSORS

The decomposition goes the same way a$fo(n ), sectioriL0.1 The matrix (0.9,

given by
T = } C (12.7)

satisfies the same characteristic equatith9 as forSO(n). Now T is antisym-
metric, AT = T, and only the antisymmetric subspace gets decompdied.)
2-index tensors decompose as

singlet: (Pabed = Lfapfea = %3
antisymmetric: (Pa)abea = 3(fadSse — facSod) — % fabfed

i} I‘%} C (12.8)

symmetric: (P3)abea = 3(faafoe + facfoa) = :

The SU(n) adjoint rep (0.19 is now split into traceless symmetric and antisym-
metric parts. The adjoint rep &fp(n) is given by the symmetric subspace, as only
P; satisfies the invariance conditiohZ.9):

Sl

Hence, the adjoint rep prOJec'uon operator f1(n) is given by

- ){ - I (12.9)

The dimension ofp(n) is

N=trP, = _nntl) (12.10)
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Young tableaux [ J®][ ] = o + [ ] ] + H

Dynkin labels (10...) x (10...) = (00...) + (010...) + (20...)
Dimensions n> = 1 + nlndl) g (n=2)(ntl)

2n —
n+2

Projectors L :%3 C*I*{I—%} C}

Dynkin indices P

Table 12.1Sp(n) Clebsch-Gordan series fof@ V.

Remember that all contractions are carried outf8y — hence the symplectic
invariants in the trace expression. Dimensions of the otbps and the Dynkin
indices (see sectionb) are listed in table 2.1

We could continue as for th#0 (n) case, withAzlV, VaVgV, - - - decompositions,
but that would turn out to be a step-by-step repetition optdid 0. As we shall show
next, reps ofSO(n) andSp(n) are related by a “negative dimensional” duality, so
there is no need to work out th#(n) reps separately.
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Chapter Thirteen

Negative dimensions

P. Cvitanovit and A. D. Kennedy

A cursory examination of the expressions for the dimensimulthe Dynkin indices
listed in table¥.3and7.5, and in the tables of chapt@rchapterl 0, and chaptet 2,
reveals intriguing symmetries under substitution> —n. This kind of symmetry is
best illustrated by the reps 86U (n); if A stands for a Young tableau withboxes,
and ) for the transposed tableau obtained by flipphgcross the diagonai.¢.,
exchanging symmetrizations and antisymmetrizations) the dimensions of the
correspondingU (n) reps are related by

SU(n):  da(n) = (=1)Pdx(—n). (13.1)

This is evident from the standard recipe for computing$&n) rep dimensions
(section9.3), as well as from the expressions listed in the tables ofteln&@pln all
cases, exchanging symmetrizations and antisymmetnmémounts to replacing
n by —n.

Here we shall prove the following:

Negative Dimensionality Theorem Bor any SU (n) invariant scalar exchanging
symmetrizations and antisymmetrizations is equivalen¢pdacingn by —n:

SU(n) = SU(—n) . (13.2)

Negative Dimensionality Theorem Bor any SO(n) invariant scalar there exists
the correspondingp(n) invariant scalar (and vice versa), obtained by exchanging
symmetrizations and antisymmetrizations, replacingsttvérn) symmetric bilinear
invariantg,;, by theSp(n) antisymmetric bilinear invariant,;, and replacing. by

—n:

SO(n) = Sp(—n),  Sp(n) =S0(—n). (13.3)

The bars onSU, Sp, SO indicate interchange of symmetrizations and antisym-
metrizations. In chapterd we shall extend the relatiod 8.3 to spinorial represen-
tations ofSO(n).

Such relations are frequently noted in literature: Pamsl Sourlas?7( have
suggested that a Grassmann vector space of dimensiam be interpreted as an
ordinary vector space of dimensiern. Penrose 781] has introduced the term
“negative dimensions” in his construction 617(2) ~ Sp(2) reps asSO(—2).
King [191] has proved that the dimension of any irreducible repfn) is equal
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to that of SO(n) with symmetrizations exchanged with antisymmetrizati@the
transposed Young tableau), andeplaced by—n. Mkrtchyan P45 has observed
this relation for theQC'D loop equations. With the advent of supersymmetries,
n — —n relations have become commonplace, as they are built ietstthcture of
groups such as the orthosymplectic graufp(b, f). For developments up to 2010,
consult ref. p44.

Various examples ofi — —n relations cited in the literature are all special
cases of the theorems that we now prove. The birdtrack psosifipler than the
published proofs for the special cases. Some highly naatexamples ofi — —n
symmetries for the exceptional group&] will be discussed in chaptet8 and
chapter20, where we show that the negative-dimensional cousinS@f4) are
E;(56), Ds(32), - - -,and thatforSU (3) then — —n symmetry leads t&s(27), - - -.

13.1 SU(n) =8SU(—n)

As we have argued in sectidn2, all physical consequences of a symmetry (rep
dimensions, level splittinggtc) can be expressed in terms of invariant scalars. The
primitive invarianttensors &#U (n) are the Kronecker tenség and the Levi-Civita
tensore,, ..., . All other invariants ofSU (n) are built from these two objects. A
scalar 8n-j coefficient, vacuum bubble) is atensor object with all iedicontracted,
which in birdtrack notation corresponds to a diagram witkexi@rnal legs. Thus, in
scalars, Levi-Civita tensors can appear only in pairs (tresimust end somewhere),
and by 6.28 the Levi-Civita tensors combine to antisymmetrizers. €amuently
SU (n) invariant scalars are all built only from symmetrizers antisymmetrizers.
Expanding all symmetry operators in &t/ (n) vacuum bubble gives a sum of
entangled loops. Each loop is worthso each term in the sum is a powemgfand
therefore arbU (n) invariant scalar is a polynomial in.

The idea of the proofis illustrated by the following typicaimputation: evaluate,
for example, the&U (n) 9-j coefficient for recoupling of three antisymmetric rank-2
reps:

8 24 2yX 2y =

@

A v

O O
SHRED
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_|_ —
:ng—nQ—nQ—i-n—nQ—l—n—i—n—nQ
=n(n—1)(n—3). (13.4)

Notice that in the expansion of the symmetry operators tlaglg with an odd
number of crossings give an even powermgfand vice versa. If we change the
three symmetrizers into antisymmetrizers, the terms theatge the sign are exactly
those with an even number of crossings. The crossing in igaal graph that had
nothing to do with any symmetry operator, appears in every tef the expansion,
and thus does not affect our conclusion; an exchange of symzat@éons and anti-
symmetrizations amounts to substitutior~» —n. The overall sign is only a matter
of convention; it depends on how we define the vertices irBthe’s.

The proof for the generddU (n) case is even simpler than the above example:
Consider the graph corresponding to an arbitigfy(n) scalar, and expand all its
symmetry operators as i1§.4). The expansion can be arranged (in any of many
possible ways) as a sum of pairs of form

...+@i@+..., (13.5)

with a plus sign if the crossing arises from a symmetrizataord a minus sign if
it arises from an antisymmetrization. The gray blobs syriziedhe tangle of lines
common to the two terms. Each graph consists only of closguklae., a definite

power ofn, and thus uncrossing two lines can have one of two consegaelfithe

two crossed line segments come from the same loop, thenasicgosplits this into
two loops, whereas if they come from two loops, it joins thertoione loop. The
power ofrn is changed by the uncrossing:

© - © w59

Hence, the pairs in the expansial3(9 always differ byn®!, and exchanging
symmetrizations and antisymmetrizations has the sameteffesubstituting, —
—n (up to an irrelevant overall sign). This completes the pafdfi3.2.

Some examples of — —n relations forSU (n) reps:

1. Dimensions of the fully symmetric rep8.(3 and the fully antisymmetric
reps 6.21) are related by the Beta-function analytic continuatiomfola
—n+p—1)

_ 1yl
(n—p)!_(_l) (—n —1)!

n!

(13.7)

2. Thereps$.13 and ©.14) correspond to the 2-index symmetric, antisymmet-
ric tensors, respectively. Therefore, their dimensiorfggure 9.1 are related
byn — —n.
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3. The reps4.79 and 0.80 (see also tabl&.5) are related by, — —n for the
same reason.

4. sectiorD.9.

13.2.50(n) = Sp(—n)

In addition tod; andeqyp..q, SO(n) preserves a symmetric bilinear invariant,
for which we have introduced open circle birdtrack notaifiori10.7). Such open
circles can occurisO(n) 3n-j graphs, flipping the line directions. The Levi-Civita
tensor still cannot occur, as directed lines, starting ontensor, would have to end
on ag tensor, that gives zero by symmetgjp(n) differs from.SO(n) by having a
skew-symmetricf,,;, for which we have introduced birdtrack notation ir2(1). In
Sp(n) we can convert a Levi-Civita tensor with upper indices inte evith lower
indices by contracting witl f’s, with the appropriate power afet f appearing.
We can therefore eliminate pairs of Levi-Civita tensorsigte Levi-Civita tensor
can still appear in a¥p(n) 3n-j graph, but as

ﬁﬁ_& — PE(f), (13.8)

wherePf(f) is the Pfaffian, and®f(f)? = det f (that is left as an exercise for the
reader). Therefore a Levi-Civita can always be replacedbgrdisymmetrization

(13.9)

For anySO(n) scalar there exists a correspondisig(n) scalar, obtained by ex-
changing the symmetrizations and antisymmetrizatams$the g,;'s and f,;'s in
the corresponding graphs. The proof that the two scalarmsamsformed into each
other by replacing: by —n, is the same as fofU (n), except that the two line
segments at a crossing could come from a new kind of loopa@unty g.;'s or
fap's. In that case, equation 8.6 is replaced by

S B 6 -

While now uncrossing the lines does not change the numbeops| changing,,’s
to fu,'s does provide the necessary minus sign. This completgsrtdad of (13.3
for the tensor reps ofO(n) andSp(n).

Some examples #O(n) = Sp(—n) relations:

1. TheSO(n) antisymmetric adjoint replQ.13 corresponds to th&p(n) sym-
metric adjoint rep12.9.

2. Compare tablé2.1and tablel0.1 See tableg.3 table7.4, and tabler.2
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3. Penrose]81] binors: SU(2) = Sp(2) = SO(—2).

In order to extend the proof to the spinor reps, we will firstén¢o invent the
Sp(n) analog of spinor reps. We turn to this task in the next chapter
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Chapter Fourteen

Spinors’ symplectic sisters

P. Cvitanovic and A. D. Kennedy

Dirac discovered spinors in his search for a vectorial gtatitat could be inter-
preted as a “square root” of the Minkowski 4-momentum sodiare

(p171 + p2y2 + p3vs + pava)? = —pi — p3 — p3 + P

What happens if one extends a Minkowski 4-momenfpmp-, ps, p4) into fermi-
onic, Grassmann dimensiofs_ .., D—n41s--+sP—2,P—1,P1, P2, -« - s Pru—1,Pn)?

The Grassmann sectpy anticommute and the gamma-matrix relatives in the Grass-
mann dimensions have to satisfy the Heisenberg algebra adation relation,

[’Y,ua’yl/] = f,ul/]- )
instead of the Clifford algebra anticommutator conditidf.@), with the bilinear
invariantf,,, = — f.,, skew-symmetric in the Grassmann dimensions.

In chapterl2, we showed that the symplectic growp(n) is the invariance
group of a skew-symmetric bilinear symplectic invarigpt. In section14.1, we
investigate the consequences of takingnatrices to be Grassmann valued; we
are led to a new family of objects, which we have namspthsters[81]. In the
literature such reps are callatetaplectid336 310, 192, 323 301, 102,193 227.
Spinsters play a role for symplectic groups analogous toptaged by spinors for
orthogonal groups. With the aid of spinsters we are able topede, for example,
all the 3-5 and 6-; coefficients for symmetric reps dfp(n). We find that these
coefficients are identical with those obtained$@?(n ) if we interchange the roles of
symmetrization and antisymmetrization and simultangoteglace the dimension
n by —n. In section14.2 we make use of the fact thap(2) ~ SU(2) to show
that the formulas foSU(2) 3-j and6-;5 coefficients are special cases of general
expressions for these quantities we derived earlier.

This chapteris based onref]. For a discussion of the role negative-dimensional
groups play in quantum physics, see réf)]].

14.1 SPINSTERS

The Clifford algebral1.2 Dirac matrix element$y,, )., are commuting numbers.
In this section we shall investigate consequences of takjntp be Grassmann
valued,

(Vu)ab(W)ed = — (Vo )ed (V) ab - (14.1)
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The Grassmann extension of the Clifford algeldra. D is

1
5[7;“%] =fwl, wr=12,...,n neven (14.2)

The anticommutator gets replaced by a commutator, andbthe:) symmetric
invarianttensoy,,,, by theSp(n) symplectic invarianf,,,.. Just as the Dirac gamma-
matrices lead to spinor reps 80 (n), the Grassmann valuegl give rise toSp(n)
reps, which we shall cabpinsters.Following the Sp(n) diagrammatic notation
for the symplectic invariantl2.1), we represent the defining commutation relation

(14.2 by
H -\ (14.3)
a<

For the symmetrized products ofmatrices, the above commutation relations lead
to
123 p

oo b

As in chapterll, this gives rise to a complete basis for expanding produkcts o
~v-matricesI's are now the symmetrized productspmatrices:
123 a

(14.4)

(14.5)

Note that while for spinors thE(*) vanish by antisymmetry fdt > n, for spinsters
the '*)’s are nonvanishing for ank, and the number of spinster basis tensors is
infinite. However, the reduction of a product/efy-matrices involves only a finite
number of TV, 0 < | < k. As the component§y, )., are Grassmann valued,
spinster traces of even numbers)&f are anticyclic:

tr Yu Vv = (V;L)ab (’Yu)ba =—tr A

<. ..

—_— —_— — —

o \\.// v \\*/ )

Y Yp Yo = — VY Yo Yu (14.6)

u \Y u \Y
N--/ N/
¢ A == A .
/N /N
o p o p
In the diagrammatic notation we indicate the beginning gfiaster trace by a dot.

The dot keeps track of the signs in the same way as the syntpileariant (12.3
for f.... Indeed, tracingi(4.3 we have

try = fu trl
, <€ RN
— —= . (24.7)

Moving a dot through & matrix gives a factor-1, as in (L4.6.
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Spinster traces can be evaluated recursively, aslinv). For a trace of an even
number ofy’s we have

(SR RAT 5 R B o & ot

. R Eee s 5o (148
.\777)777/ .\777)777/’ .\777)777,/ .\777)777/’

The trace of an odd number afs vanishes §1]. Iteration of equation14.9
expresses a spinster trace as a sum ofghe1)!! = (p — 1)(p — 3) ... 5.3.1 ways
of connecting the external legs wiifp,.. The overall sign is fixed uniquely by the
position of the dot on the spinster trace:

[EA R WIWR N4 A2 .

\
!
’

= -
! \/
\ "

;.

and so on (se€l(.15).

Evaluation of traces of severHls is again a simple combinatoric exercise. Any
term in which a pair off,,,, indices are symmetrized vanishes, which implies that
anyT'(®) with & > 0 is traceless. ThE’s are orthogonal:

<L N
al b = laldy __a . (14.10)

The symmetrized product af f,.,,’'s denoted by

1
I ZﬂE (14.11)
a

is either symmetric or skew-symmetric:
A 00

at = (-1 _a. (14.12)

——v—

A spinster trace of three symmet$p(n) reps defines a 3-vertex:

Y\»/y o alble]
v s o E

o
=0 fora+b+c¢ = odd,

s:%(b—i—c—a), t:%(c—i—a—b), u:%(a—i—b—c). (14.13)

As in (11.20, I''s provide a complete basis for expanding products of aatyitr
numbers ofy matrices:

1 =Y N (14.14)
b

The coupling coefficients inl@.14 are computed as spinster traces using the or-
thogonality relation14.1Q. As only traces of even numbersg$ are nonvanishing,
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spinster traces are even Grassmann elements; they thusuterwith any other’,
and all the signs in the above completeness relation are higaous.

The orthogonality ofl’s enables us to introduce projection operators and 3-
vertices:

1 3 .- 1 3 -
e S (14.15)

a b
a b (_1)t \4\/
Y == :\f : (14.16)

The sign factof—1)* gives a symmetric definition of the 3-vertex (séel@)). It is
important to note that the spinster loop runs clockwise imdlefinition. Because of
(3.4, the 3-vertex has a nontrivial symmetry under interchalfgwo legs:

T s+t+u Y (1417)

Note that this is different fr0m1(1.26, one of the few instances of spinsters and
spinors differing in a way that cannot be immediately untterd as am — —n
continuation.

The completeness relatioh4.14 can be written as

I

[+
>

\

! V= . B (14.18)
B D Rt -
\ -- b
v oA L 2
The recoupling relation is derived as in the spinor cd4e32
Cer
< ”J,»\/ /1(/,«/
c% ‘ Z 2 D = (14.19)
ooy < ) L€ . .‘\,4\-

/
\

Hered, is the dimension of the fully symmetrizédndex tensor rep ofp(n):

1
dy = @% _ @E _ <” +£_ 1> _ (_1)b(_b”) . (14.20)

The spinster recoupling coefficients ih4(19 are analogues of the spinor Fierz
coefficients in {1.3). Completeness can be used to evaluate spinster traces in th
same way as in examples1(.39 to (11.35.
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The next step is the evaluation®’s, 6-5's, and spinster recoupling coefficients.
The spinster recoupling coefficients can be expressed nmstef 3-;'s just as in
(12.3%:

L ,;f[tf;\ - Z(_U#@c. (14.21)
0 ! b

The evaluation 03-j and6-; coefficients is again a matter of simple combinatorics:

@_(_1)S+Hu<n+s—l—t—l—u—1)(s—l—t—l—u)!7 (14.22)

s+t+u sltlu!

n+t—1 (—1)¢!
14.23
Z ( t )tl!tQ!t3!t4!t5!t6!t7! ’ ( )

with thet; defined in (1.48.

We close this section with a comment on the dimensionalitgpifister reps.
Tracing both sides of the spinor completeness relatidnZ), we determine the
dimensionality of spinor reps from the sum rulel(30:

(tr1)? = Xn: <Z> =9,

a=0

Hence, Dirac matrices (in even dimensions) @f&? x 2"/2], and the range of
spinorindices in{1.3isa,b =1,2,...,2"/2,

For spinsters, tracing the completeness relatldni(§ yields (the string ofy ma-
trices was indicated only to keep track of signs for o)k

’\,4\) ’\,4\): ;YJFb _ Zdb (14.24)
NI 3 '\\ b b

o0

tr1)?= <n+b—1>.

=3 ("7
The spinster trace is infinite. This is the reason why spirisiees are not to be found
in the list of the finite-dimensional irreducible reps$(»). One way of making
the traces meaningful is to note that in any spinster traeéuation only a finite
number ofl’s are needed, so we can truncate the completeness relatiarf(to
terms0 < b < byae- A More pragmatic attitude is to observe that the final result
of the calculation are thga-; and6-; coefficients for the fully symmetric reps of
Sp(n), and that the spinster algebfiad(2) is a formal device for projecting only the
fully symmetric reps from various Clebsch-Gordan seriesSia(n).

The most striking result of this section is that g and6-; coefficients are
just theSO(n) coefficients evaluated for — —n. The reason for this we already
understand from chaptés.

When we took the Grassmann extension of Clifford algebré&4rD), it was not
too surprising that the main effect was to interchange the @b symmetrization
and antisymmetrization. All antisymmetric tensor rep$'6f(n) correspond to the
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symmetric rep ofSp(n). What is more surprising is that if we take the expression
we derived for theSO(n) 3-j and6-; coefficients and replace the dimensioiby

—n, we obtain exactly the corresponding result$ai(n). The negative dimension
arises in these cases through the relatigft) = (—1)*("*%~"), which may be
justified by analytic continuation of binomial coefficiefug the Beta function.

14.2 RACAH COEFFICIENTS

So far, we have computed tlée; coefficients for fully symmetric reps dip(n).
Sp(2) plays a special role here; the symplectic invarigiit has only one indepen-
dent component, and it must be proportionad#é. Hence,Sp(2) ~ SU(2). The
observation thatU(2) can be viewed aSO(—2) was first made by Penrosad1],
who used it to comput8U (2) invariants using “binors.” His method does not gen-
eralize toSO(n), for which spinors are needed to project onto totally amtisyetric
reps (for the case = 2, this is not necessary as there are no other repsf F¢2),

all reps are fully symmetric (Young tableaux consist of a simgVe), and ou6-;'s
are all the6-;'s needed for computingU (2) ~ SO(3) group-theoretic factors.
More pedantically:SU (2) ~ Spin(3) ~ SO(3). Hence, all the Racat?$7] and
Wigner coefficients, familiar from the atomic physics teotks, are special cases
of our spinor/spinstes-;’s. Wigner’s3-j symbol 6.14

o (_1)j1 —j2+M
(Jl Jj2 J )
mi1 m2 —M 2J + 1
is really a clebsch with ou8-5 as a normalization factor.
This may be expressed more simply in diagrammatic form:

(j1j2mamal|J M) (14.25)

2is
o J Z’phase \
(.71 J2 2] (14.26)

Ty e a1 = \/@22/

where we have not specified the phase convention on thehiyid-side, as in the
calculation of physical quantities such phases canceloFaaf 2 appear because our

integersu, b,... = 1,2,...countthe numbers &U (2) 2-dimensional repsyO(3)
spinors), whilethe usugl, jo,... = %, 1, %, ... labels correspond 8O (3) angular
momenta.

It is easy to verify (up to a sign) the completeness and oghality properties
of Wigner's3-j symbols

2j1 2i1
i g o d 2J
D741 (G A G )~ g DA

21 ) )
J.M J @ 2iz 2j2

I
K
(=7]
3
_.3\
=7]
5
mg\
/':
:b
N
=




GroupTheory  version 9.0.1, April 8, 2011

166 CHAPTER 14
1 = 2
TR i e J 2J 2J
Z (ngh 37212 1{1) (grln 37212 ]{4/) ~ zjl_@'A_(SJJ’
&
Onnr 0
~N—_. 14.28
2J +1 ( )

The expressionl@4.2? for our 3-j coefficient withn = 2 gives the expression

i i 1 j k1
usually written as\ in Racah’s formula fo(?, 5 7),

5
1 , G+E+1+1)!
A(j, k1) (=1) GHE=DWk+L—D({I+75— k) ( )
Wigner's6-j coefficients §.15 are the same as ours, except that the 3-vertices are
normalized as inX4.29

1 2k, 2k,
= EEEE s
\3y/

2k,

J1 J2 J3
k1 ko k3

which gives Racah’s formula using4.23, with n = 2:
{'1?1 e } = [A(jrkaks) Ak joks) Ak kajs) A1 j2gs)]
—1)t !
y Z (=Dt + 1)

., Wwhere
t1ltaltsltylts 6t 7!

t
Li=t—j1—J2—7Js, ls =J1+tJje—k1i+ka—t,
lo=t—j1—ka—ks, l¢ =Jo+js+hkathks—1t,
lg=t—ki—jo—ks, tr=js+tj+tkstk —t,
tamt — k1 — ko — s (14.31)

14.3 HEISENBERG ALGEBRAS

What are these “spinsters”? A trick for relatif@(n) antisymmetric reps t§p(n)
symmetric reps? That can be achieved without spinstergehdPenrose’pB1]
had observed many years ago tl%&?(—2) yields Racah coefficients in a much
more elegant manner than the usual angular momentum matigng. In chap-
ter 13, we have also proved that for any scalar constructed frosoteinvariants,
SO(—n) ~ Sp(n). This theorem is based on elementary properties of perronsat
and establishes the equivalence betwégrcoefficients forSO(—n) and Sp(n),
without reference to spinsters or any other Grassmann &xies

Nevertheless, spinsters are the natural supersymmetengsn of spinors, and
the birdtrack derivation offers a different perspectianirthe literature discussions
of metaplectic reps of the symplectic groupl[), 323 102, 193 227. They do
not appear in the usual classifications, because they anitéafiimensional reps
of Sp(n). However, they are not as unfamiliar as they might seem; ifwite the
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Grassmanniarny matrices forSp(2D) as~y, = (p1,p2,...pp,%1,%2...2p) and
choosef),,, of form

0 1
f= (_1 O) , (14.32)

the defining commutator relatioi4.2 is the defining relation for a Heisenberg
algebra, except for a missing factoriof

[pian] :51'3'1, ’L,_]Zl,z,D (1433)

If we include an extra factor afinto the definition of the “momenta” above, we find
that spinsters resemble an antiunitary Grassmann-vadyeaf the usual Heisenberg
algebra. The Clifford algebra has its spinor reps, and thisgfderg algebra has
its infinite-dimensional Fock representation. The Foclcspap of the metaplectic

groupMp(n) is the double cover of the symplectic grofip(n), just as the spinors

rep of theSpingroup is the double cover of the rotation groti@(n).
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SU (n) family of invariance groups

SU(n) preserves the Levi-Civita tensor, in addition to the Krdmee of sec-
tion 9.1Q This additional invariantinduces nontrivial decompiosis ofU (n) reps.

In this chapter, we show how the theory 88/ (2) reps (the quantum mechanics
textbooks’ theory of angular momentum) is developed bytkacking; thatSU (3)

is the unique group with the Kronecker delta and a rank-3gmtimetric primitive
invariant; thatSU (4) is isomorphic taSO(6); and that fom > 4, only SU(n) has
the Kroneckeb and rankr antisymmetric tensor primitive invariants.

15.1 REPS OFSU(2)

For SU(2), we can construct an additional invariant matrix that woagbear to
induce a decomposition &f ® V reps:

1 b c
Z,Z = —e%pg = I I . (15.1)
2 d a

However, by 6.28 this can be written as a sum over Kronecker deltas and is not
an independent invariant. So what daés do? It does two things; it removes the
distinction between a particle and an antiparticlg{ifransforms as a particle, then
et q, transforms as an antiparticle), and it reduces the regelR) to the fully
symmetric ones. Considéf @ V' decompositionq.4)

1@ [2]=[1]2]+ e

o s
2-3

3021
2P2="" 4
> "2

The antisymmetric rep is a singlet,

:]: _ :] I:: (15.3)

Now consider thexV? and @V* space decompositions, obtained by adding
successive indices one at a time:

—— T=

<

T | =
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[1] > [2] x [3]=[1][2[3] + [1] + [3]

— %E*‘ :sz:

ciaeso A= HE

[1] < [2] x [3] x [4]=[1]2]3]4] +[1]4]+ [3]4] + [1[2] + e f ». (15.4)

This is clearly leading us into the theory 80(3) angular momentum addition (or
SU(2) spin,i.e., bothinteger and half-integer irreps of the rotation gnedpscribed
in any quantum mechanics textbook. We shall, anyway, gexitsle while longer,
just to illustrate how birdtracks can be used to recover stamdiar results.

The projection operator fon-index rep is

1
P, =* ?jE . (15.5)

The dimensionisr P,,, =22+ 1)(2+2)...(2+m —1)/m! =m~+1.Inquan-
tum mechanics textbooks is set tom = 2j, wherej is the spin of the rep. The
projection operatorq.10 for the adjoint rep (spin 1) is

YCTTDC we

This can be rewritten as using (L5.3. The quadratic casimir for the defining
repis

o

3
—— 15.7
X (15.7)

TI-XC- -5 e

we can compute the quadratic casimir for any rep

Using

=)

(15.9)
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The Dynkin index fom-index rep is given by
1
(n) = Cy(n)d, _ nn+1)(n+2) .
C(2)dy 24
We can also construct clebsches for various Kronecker pitsdEor example,

Ap @ A1 Is given by
Mi E (15.11)
po-=

1
fila
foranyU(n). For SU(2) we have (5.3, so

p
[112]-p-1 x [pl=[a[2[-]p] +[1]2]-[p-2

7L Ii (15.12)

Hence, the Clebsch-Gordan fdy @ A\ — Ap—1 is

—_— 1
—— 2

V2(p—1)/p Hl e p2- (15.13)

(15.10)

As we have already given the complete theoryS@#(3) angular momentum in
chapterl4, by giving explicit expressions for all Wigner peoefficients (Racah
coefficients), we will not pursue this further here.

Group weights have an amusing graph-theoretic intergoetédr SO(3). For a
planar vacuum (no external legs) diagram weight with normalizationa = 2,
We is the number of ways of coloring the lines of the graph witieécolors 281].
This, in turn, is related to the chromatic polynomials, Head/s conjecture, and
the 4-color problemZ94, 269.

15.2 SU(3) AS INVARIANCE GROUP OF A CUBIC INVARIANT
QCD hadrons are built from quarks and antiquarks, and withidraspectrum con-
sisting of the following

1. Mesons, each built from a quark and an antiquark.

2. Baryons, each built from three quarks or antiquarks inlg &ntisymmetric
color combination.

3. No exotic states,e., no hadrons built from other combinations of quarks and

antiquarks.

We shall show here that for such hadronic spectrum the catmrgcan be only
SU(3).

In the group-theoretic language, the above three conditioa a list of the prim-
itive invariants (color singlets) that define the color guou
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1. One primitive invariant is¢, so the color group is a subgroup$¥ (n).
2. There is a cubic antisymmetric invariagfft* and its dualf,p..

3. There are no further primitive invariants. This meansang invariant tensor
can be written in terms of the tree contractiongaff**¢ and fy.,.

In the birdtrack notation,

C C
fere = /t\ s fabe = A : (15.14)
a b a b

fape and f2%¢ are fully antisymmetric:

)é\ = —/t\ . (15.15)

We can already see that the defining rep dimension is at le&st,t. > 3, as other-
wise fq. would be identically zero. Furthermorgs must satisfy a normalization
condition,

fabcfbdc = 045:11

—)—O—)—:a—)— . (15.16)

(For convenience we set= 1 in what follows.) If this were not true, eigenvalues
of the invariant matrixt; = £ frq. could be used to split the-dimensional rep
in a direct sum of lower-dimensional reps; but thedimensional rep would not be
the defining rep.

V ®V states: According to (.4), they split into symmetric and antisymmetric
subspaces. The antisymmetric space is reduced-ton(n — 3)/2 by the fabe

invariant:
2>
A = fape 4 + {Aav® — fave £} . (15.17)

On the symmetric subspace tfig. f¢°? invariant vanishes due to its antisymmetry,
so this space is not split. The simplest invariant matrixtndymmetric subspace
involves fourf’s:

f

a C )
Kop, ™ = eg 9 = faepfongfrfY . (15.18)
b d

h
As the symmetric subspace is not split, this invariant masefa single eigenvalue

Kap," = BSaw, " = B : (15.19)
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Tracing K, “* fixes § = —25. The assumption, that is not an independent in-

variant, means that we do not allow the existence of exgfig; hadrons. The
requirement, that all invariants be expressible as treesmifactions of the primi-

tives
N +B:><+C:>+(:, (15.20)

leadstotherelatiorl6.19. The left-hand side is symmetric underindex interchange
a <+ b,soC =0andA = B.

V®V states:The simplest invariant matrix that we can construct fresis

d 1a C d
g’c = :M = fae fbce . (1521)
(€] d

By crossing 15.19, Q satisfies a characteristic equation,

QP=—— (14T}

1> 1 e —
Z Y = . 1522
“>le n+1 {—(— * } C} ( )
On the traceless subspaded), this leads to
1
2 1)P,=0 15.23
(@2~ 1) a0, (15.29

with eigenvalues-1/v/n + 1. V ® V contains the adjoint rep, so at least one of the
eigenvalues must correspond to the adjoint projectionaipefVe can compute the
adjoint rep eigenvalue from the invariance conditidr@ for f°¢:

%Jr\‘ i +ti«_o. (15.24)

Contracting withf¢, we find

RO
T2
PAQ:—%PA. (15.25)

Matching the eigenvalues, we obtdifn/n + 1 = 1/2, son = 3: quarks can come
in three colors only, andl,;. is proportional to the Levi-Civita tensey,,. of SU(3).
The invariant matrixQ is not an independentinvariant; thén — 3) /2-dimensional
antisymmetric spacée.6.17 has dimension zero, $Q can be expressed in terms of

Kronecker deltas:

0=Au"“ - Q8. (15.26)
We have proven that the only group that satisfies the comditie-3, at the beginning
of this section, isSU(3). Of course, it is well known that the color group of physical
hadrons isSU (3), and this result might appear rather trivial. That it is nowsll
become clear from the further examples of invariance grauysh as thér, family
of the next chapter.
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15.3 LEVI-CIVITA TENSORS AND SU(n)

In chapterl2, we have shown that the invariance group for a symplectariantf **
is Sp(n). In particular, forfe® = 2%, the Levi-Civita tensor, the invariance group is
SU(2) = Sp(2). Inthe preceding section, we have proven that the invagignoup
of a skew-symmetric invariante® is SU(3), and thatf**¢ must be proportional
to the Levi-Civita tensor. Now we shall show that ¢ with » indices, the
invariance group iU (r), andf is always proportional to the Levi-Civita tensor.
(We consider here unitary transformations only; in genénalwhole grou' L(3)
preservesthe Levi-Civitatensor.)= 2 andr = 3 cases had to be treated separately,
because itwas possible to construct frthandf 2t tree invariants on thE@ V' —
V ® V space, which could reduce the grasify (n) to a subgroup. Fof*®, n > 4
this is, indeed, what happen$t/(n) — Sp(n), for n even.

Forr > 4, we assume here that the primitive invariants &ffeand the fully
skew-symmetric invariant tensors

e < (PN fuoar = [, T3 (152D)

A fully antisymmetric object can be realized only in> r dimensions. By the
primitiveness assumption

P@:: 2a I , etc, (15.28)
n—1

i.e., various contractions of's must be expressible in terms &$, otherwise there
would exist additional primitives.f(invariants themselves have too many indices
and cannot appear on the right-hand side of the above egsatio

The projection operator for the adjoint rep can be built droyn 6795 andogds.
From sectior®.1q we know that this can give us only t8&/ (n) projection operator
(7.8), but just for fun we feign ignorance and write

é}C_A{:—i—b} C} . (15.29)

The invariance conditior5(56 on f,;.. . yields

Contracting from the top, we gét= 1 + bn. Antisymmetrizing all outgoing legs,
we get

0= . (15.30)
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Contracting withyy from the side, we gt = n — r. As in (6.30), this defines the
Levi-Civita tensor inn dimensions and can be rewritten as

% — naH . (15.31)

(The conventional Levi-Civita normalizationigx = n!.) The solutiorb = —1/n
means that’; is tracelessi.e., the same as for th8U (n) case considered in sec-
tion 9.10 To summarize: The invariance condition forggs... .. to be proportional
to the Levi-Civita tensor (im dimensions, a Levi-Civita tensor is the only fully
antisymmetric tensor of rank), and the primitivesy, f,»...q (rankn) haveSU (n)
as their unique invariance algebra.

15.4 SU(4)-SO(6) ISOMORPHISM

We have shown that if the primitive invariants a¥@, f,;. .., the corresponding
Lie groupis the defining rep &fU (n), andfas....q IS proportional to the Levi-Civita
tensor. However, there are still interesting things to lietaiaout particulabU (n)’s.
As an example, we will establish ti##/(4) ~ SO(6) isomorphism.

The antisymmetriéU (4) repis of dimensiod4 = 4 - 3/2 = 6. Letusintroduce

clebsches

Agp = Z('y’ Jav(7)Y, w=1,2,...,6. (15.32)

1/4 normalization ensures thais will have the Dirac matrix normalization.
The Levi-Civita tensor induces a quadratic symmetric ifargron the 6-dimen-

sional space
-(ﬂ)- ﬁ:ﬂ:ﬁ

=1 (w) Pepaca()™ . (15.33)

This invariant has an inverse:

g = et = G—JQS—, (15.34)

where the factor 6 is the normalization factor, fixed by thediiong,,,, g"* = d;;:

Guv 9" = B .
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g () e
=6 4 3
— m—p—— 57 . (15.35)

Here we have use® (28, (15.39, and the orthonormality for clebsches:

e e — mmgem
(V)™ (7" )ba =407, . (15.36)

As we have shown in chapt&®6, the invariance group for a symmetric invarigpt
is SO(d ). One can check that the generators for the 6-dimensionalfrép’(4),
indeed, coincide with the defining rep generator§ 6(6), and that the dimension
of the Lie algebra is in both cases 15.

The invariance conditior6(56) for the Levi-Civita tensor is

oﬁm:::ﬂ a5
n
For SU(4) we have
- > [ ]
+ ] + e + = j 1 . (15.38)
+] \q Y'Y ] YVYY }

Contracting with(,,)** (v, )°?, we obtain

&
<

+ -
(A/u) ’71/ ab + 'Yu ad ’\/u 26‘09;“/ . (1539)

Here(7,)ar = (7)Y 4ean, @and we recognize the Dirac equatidri (9. So the
clebsches5.3) are, indeed, the-matrices forSO(6) (semi)spinor repsl(1.69.
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Chapter Sixteen

G, family of invariance groups

In this chapter, we begin the construction of all invariageeups that possess a
symmetric quadratic and an antisymmetric cubic invariarnhée defining rep. The
resulting classification is summarized in figdi@ 1 We find that the cubic invariant
must satisfy either the Jacobi relatiakb(7) or the alternativity relation1(6.17). In
the former case, the invariance group can be any semisinilgraup in its adjoint
rep; we pursue this possibility in the next chapter. Thestatbse is developed in
this chapter; we find that the invariance group is eitf@x3) or the exceptional Lie
groupGs. The problem of evaluation 8- j coefficients foiGs is solved completely
by the reduction identityl(6.19. As a by-product of the construction, we give a proof
of Hurwitz's theorem (sectiof6.5 and demonstrate that the independent casimirs
for G, are of order 2 and 6, by explicitly reducing the order 4 casinsectionl 6.4
Here we are concerned only with the derivatiorthf For a systematic discussion
of G5 invariants (in tensorial notation) we refer the reader tacfddane 221].
Consider the following list of primitive invariants:

1. ¢, so the invariance group is a subgrousaf (n).

2. Symmetricg® = ¢%*, go» = gra, SO the invariance group is a subgroup of
SO(n). As in chapterl0O, we take this invariant in its diagonal, Kronecker
delta formd,y.

3. A cubic antisymmetric invariant, ..

Primitiveness assumptioaquires that all other invariants can be expressed in terms
of the tree contractions @f,;, , fape.

In the diagrammatic notation, one keeps track of the antisgtry of the cubic
invariant by reading the indices off the vertex in a fixed orde

.fabc = * = _i = _.facb- (161)

The primitiveness assumption implies that the double eatin of a pair off’s
is proportional to the Kronecker delta. We can use this i@a fix the overall
normalization off’s:

fabc.fcbd =« 6ad

For convenience, we shall often set= 1 in what follows.

(16.2)
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primitives: /k | —

two relations one relation

assume:
no relations

o s

Jacobi alternatlvny

Bo aToca -

any adjoint representation

quarti; primitive no quartic primitive
SU(n), SO(n), Sgn) E, family

Figure 16.1 Logical organization of chaptdi$-17. The invariance groupSO(3) andG-
are derived in this chapter, while tlig family is derived in chaptet 7.

The next step in our construction is to identify all invatieratrices orl’®V and
construct the Clebsch-Gordan series for decompositiorinfi@x tensors. There
are six such invariants: the three distinct permutatiorindites ofd,;d.q4, and the
three distinct permutations of free indices@f. f..q. For reasons of clarity, we shall
break up the discussion in two steps. In the first step, se&@iol, we assume that
a linear relation between these six invariants exists. Bymametry considerations,
together with the invariance condition, completely fix thgedra of invariants and
restrict the dimension of the defining space to either 3 onthé second step,
sectionl6.3 we show that a relatioassumedh the first step must exist because of
the invariance condition.

Example.Consider “quarks" and “hadrons" of a Quantum Chromodynamith
the hadronic spectrum consisting of the following singlets

1. Quark-antiquark mesons.
2. Mesons built of two quarks (or antiquarks) in a symmetploccombination.

3. Baryons built of three quarks (or antiquarks) in a fullgisymmetric color
combination.

4. No exotics,i.e,, no hadrons built from other combinations of quarks and
antiquarks.
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As we shall now demonstrate, for this hadronic spectrum tier group is either
SO(3), with quarks of three colors, or the exceptional Lie gr@up with quarks
of seven colors.

16.1 JACOBI RELATION

If the above six invarianttensors are not independent,shégfy a relation of form

0=A4A +B) C+C><+D::+E>—<+F:><. (16.3)

Antisymmetrizing a pair of indices yields

0= A’I +EH+F’I:7 (16.4)

and antisymmetrizing any three indices yields

0=(E+F) : (16.5)

If the tensor itself vanisheg's satisfy theJacobi relation(4.49:

mhﬁ a5

If A’ #0in (16.9), the Jacobi relation relates the second and the third term:

0= I + E>—< . (16.7)

The normalization conditiornl@.2 fixes B’ =

H I (16.8)

Contracting the free ends of the top line witl,, we obtainl = (n — 1)/2, so
n = 3. We conclude that if pair contraction ¢fs is expressible in terms dfs,
the invariance group iSO(3), and f.s. is proportional to the 3-index Levi-Civita
tensor. To spell it out; in three dimensions, an antisyminesink-3 tensor can take
only one valuef,;,. = +f123, that can be set equal thl by the normalization
convention 16.2.

If A = 0in (16.4), the Jacobi relation is the only relation we have, and the
adjoint rep of any simple Lie group is a possible solution.néfeirn to this case in
chapterl?.

16.2 ALTERNATIVITY AND REDUCTION OF f-CONTRACTIONS

If the Jacobi relation does not hold, we must h@ve= —F” in (16.5, and (L6.4

takes the form
>_<+ I 4 I . (16.9)
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Contracting withd,;, fixes A” = 3/(n — 1). Symmetrizing the top two lines and
rotating the diagrams b30°, we obtain thelternativity relation

j[:nil{D C—I}- (16.10)

The name comes from the octonion interpretation of this fdasee sectioh6.4).

Adding the two equations, we obtain
1

I+H_H_1{ —2><+) C} (16.11)
By (16.9, the invariant is reducible on the antisymmetric subspace. By
(16.10, it is also reducible on the symmetric subspace. The onlgpendent - f
invariant is)—(, which, by the normalization1@.2), is already the projection
operator that projects the antisymmetric 2-index tensats the n-dimensional
defining space. The Clebsch-Gordan decomposition®fl” follows:

Dl bhdad
O-CH{E >

(n = 1)2("+2) fnyn=3) (16.12)

The dimensions of the reps are obtained by tracing the quurelng projection
operators.

The adjoint repI of SO(n) is now split into two reps. Which one is the new
adjoint rep? We determine this by consideriggb@, the invariance condition for
Save- 1f we take)—( to be the projection operator for the adjoint rep, we again
get the Jacobi conditiorlf.6), with SO(3) as the only solution. However, if we
demand that the last term ifi§.12 is the adjoint projection operator

%){ _ I _ >—< (16.13)

the invariance condition takes the form

The last term can be simplified b§.(9 and (16.9:

R e

Substituting back into1(6.149 yields

b Fyeol

n’=1+
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Expanding the last term and redrawing the equation slighiyhave

by

This equation is antisymmetric under interchange of thedafl the right index
pairs. Hence2/(n — 1) = 1/3, and the invariance condition is satisfiedly for
n = 7. Furthermore, the above relation gives us@hereduction identity

This identity is the key result of this chaptérenables us to recursively reduak

contractions of products @ffunctions and pairwise contractiofig,. fcq4., and thus

completely solves the problem of evaluating any casimireyj coefficient ofGs.
The invariance conditionl@.14 for f,;. implies that

> DC 539

The “triangle graph” for the defining rep can be computed io tvays, either by
contracting {6.10 with f,;., or by contracting the invariance conditioh6(14

Wwith d4p:
A )\ (16.17)
n—1

So, the alternativity and the invariance conditions aresistant if(n—3) (n—7) = 0,

i.e., only for three or seven dimensions. In the latter case, the ianee group is
the exceptional Lie grou@'s, and the above derivation is also a proof of Hurwitz’s
theorem (see sectidrb.4).

In this way, symmetry considerations together with the iiiarece conditions
suffice to determine the algebra satisfied by the cubic iam&riThe invariance
condition fixes the defining dimension to= 3 or 7. Having assumed only that
a cubic antisymmetric invariant exists, we find that if the icuinvariant is not a
structure constant, it can be realized only in seven dinoaissiand its algebra is
completelydetermined. The identityl@.19 plays the role analogous to one the
Dirac relation{~,, v, } = 2g¢,,,1 plays for evaluation of traces of products of Dirac
gamma-matrices, described above in chapiedust as the Dirac relation obviates
the need for explicit reps of’s, (16.14 reduces any - f - f contraction to a sum
of terms linear inf and obviates any need for explicit constructiory .

The above results enable us to compute any group-theoreititfor Gs in two
steps. First, we replace all adjoint rep lines by the proj@ctperator® 4 (16.13.
The resulting expression contains Kronecker deltas anthgltd contractions of
fave, Which can then be reduced by systematic application ofatieation identity
(16.19.
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The above 1975 diagrammatic derivation of the Hurwitz teeowas one of the
first nontrivial applications of the birdtrack technologys[ 74, 82]. More recently,
the same diagrammatic proof of Hurwitz's theorem has beeangby Dominic
Boos [27], based on the algebraic proof by Markus Raxsi(].

16.3 PRIMITIVITY IMPLIES ALTERNATIVITY

The step that still remains to be proven is the assertiortlieadlternativity relation
(16.10 follows from the primitiveness assumption. We complet phoof in this
section. The proofis rather inelegant and should be stieath{an exercise for the
reader).

If no relation (L6.3 between the threg¢ - f contractions is assumed, then by the
primitiveness assumption the adjoint rep projection ofpe® 4 is of the form

)—C_A{I+B>—C+C:I}. (16.18)

Assume thatthe Jacobirelation does not hold; otherwissintmediately reduces to
SO(3). The generators must be antisymmetric, as the group is asubgfSO(n).
Substitute the adjoint projection operator into the ingacie condition§.56 (or

(16.19) for faupe:

0= :IEE+B)—EIE+O:I£E. (16.19)

Resymmetrize this equation by contracting wi —__. This is evaluated
substituting 6.19 and using the relatior6(61):

I EE =0. (16.20)
The resultis

Multiplying (16.19 by B, (16.2]) by C, and subtracting, we obtain

IRPIRE i RECRCIPNG R

We treat the cas8 + C' = 0 below, in (L6.29.
If B+ C # 0, by contracting withf,;. we getB — C'/2 = —1, and

0= ﬁ - )—EE . (16.23)

To prove that this is equivalent to the alternativity redatiwe contract Wit&,
expand the 3-leg antisymmetrization, and obtain
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O > >
- XL DDA e

The triangle subdiagram can be computed by addiggl© and (6.21)

0(B+C){%)—EE+:I£E}

and contracting With—C. The resultis

A = —%)\ (16.25)

Substituting into 16.29, we recover the alternativity relatioi.10. Hence, we
have proven that the primitivity assumption implies thedativity relation for the
caseB + C # 01in (16.22.

If B+ C =0, (16.19 takes the form

= :I’EBB Ny :IEE w6.26)

Using the normalization/(39 and orthonormallt conditions, we obtain

:67

/ \ 9—
S e
N= @ 4710"7_n . (16.29)

The remaining antisymmetric rep

>
5n{:|:2_I S:Z }(16.30)

d= S v/ A Ly (16.31)

(16.27)

has dimension
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The dimension cannot be negative, & 7. Forn = 7, the projection operator
(16.30 vanishes identically, and we recover the alternativitgtien (16.10.

The Diophantine conditionl.3) has two further solutionst = 5 andn = 6.

Then = 5is eliminated by examining the decomposition of the trexesymmet-
ric subspace in1(6.12, induced by the invariar® = | . By the primitiveness

assumptionQ? is reducible on the symmetric subspace

HAIT T {T0-D

0=(Q*+ AQ + B1)P>.
Contracting the top two indices withy, and(T;).s, we obtain
5 13—n 5 6—n

<Q 39-n% 2(2+n)(9—n)1)P2_0' (16.32)
Forn = 5, the roots of this equation are irrational and the dimerssiohthe
two reps, induced by decomposition with respectypare not integers. Hence,
n = 5 is not a solution. The: = 6 case appears to be related to Westbury's
sextoniang341, 208 209, 343 a 6-dimensional alternative algebra, intermediate
between the complex quaternions and octonions. | leave ribef pf that as an
exercise to the reader.

16.4 CASIMIRS FOR G

In this section, we prove that the independent casimirg-fpare of order 2 and 6,
as indicated in tablé.1 As Gs is a subgroup o6O(7), its generators are antisym-
metric, and only even-order casimirs are nonvanishing.

The quartic casimir, in the notation of.Q),

@ =trX*= inxja:ka:l tr (T TTh)

ijkl
can be reduced by manipulating it with the invariance coowlit6.56)

@:—2( | ) = 2 | )+2®.

The last term vanishes by further manipulation with the ifarzce condition

@:@: 0. (16.33)

The remaining term is reduced by the alternativity relaib®.10

I -dT-s{0C-C}-

Thisyields the explicit expression for the reduction ofigigacasimirs in the defining

B e Nl (e e N )

tr X4 :i (tr X%)* . (16.34)
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As the defining rep is 7-dimensional, the characteristiatign (7.10 reduces the
casimirs of order 8 or higher. Hence, the independent cesiimi G are of order
2 and 6.

16.5 HURWITZ'S THEOREM

Throughout this text the field over which the defining vectoaceV is defined
is eitherR, the field of real numbers, d, the field of complex numbers. Neither
guaternions (a skew field or division ring), nor octonionadaassociative algebra)
form a field.

Frobenius’s theorem states that the only associative ngalah algebras are the
real numbers, the complex numbers, and the quaternionsder o interpret the
results obtained above, we need to definemed algebras

Definition (Curtis [70]). A normed algebral is an(n+1)-dimensional vector space
over a fieldF" with a productry such that
(1) z(cy) = (ca)y = c(zy), ceF
(i) x(y + 2) = 2y + a2, r,y,2 € A
(@ +y)z = 2z +yz,
and a nondegenerate quadratic norm that permits compuositio

(i5i)  N(vy)=N(z)N(y), N(z)€eF (16.35)
HereF' will be the field of real numbers. Lk, ey, .. ., e, } be a basis ofl over
F:

T = x0€0 + T1€1 + ...+ Tpre,, v, €F, e, €A. (16.36)

It is always possible to choosg = I (see Curtis [(]). The product of remaining
bases must close the algebra:

eqep = —dgpl + favcee, dapy fabe € F a,...,c=1,2,....n. (16.37)
The norm in this basis is
N(z) = x% + dopTaXh. (16.38)
From the symmetry of the associated inner product (TBifs]),
N(z+y) = N(z) - N(y)
2 b)
it follows that—d.;, = (eq, ep) = (ep, €q) IS Symmetric, and it is always possible
to choose basas, such that
€.,€p = _6ab + fabcec- (1640)

(z,y) = (y,2) = — (16.39)

Furthermore, from

- (xy,x):N(gcy—i_‘T);N(gC)N(y) _ N(x)N(y+1) ;N(y) -1

=N(x)(y, 1), (16.41)
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it follows that f,p. = (eq, €, €.) is fully antisymmetric. [In Tits’s notationg24],
the multiplication tensof ;. is replaced by a cubic antisymmetric fo(m o', a’’),
his equation (14)]. The composition requiremeri.35 expressed in terms of bases
(16.39is

0=N(zy) — N(z)N(y)

=TaTblyclYd (§ac§bd - 6ab60d + facefcbd) . (1642)

To make a contact with sectidi6.2 we introduce diagrammatic notation (factor
i/6/a adjusts the normalization t4.¢.2)

fave = z\/E /k : (16.43)
«

Diagrammatically, {6.49 is given by

0_4::]—X+2J—L. (16.44)

This is precisely the alternativity relatioh§.10Q we have proven to be nontrivially
realizable only in three and seven dimensions. The trie@lizations are = 0 and
n =1, fae = 0. SO we have inadvertently proven

Hurwitz's theorem [165 166 70, 169: (n+1)-dimensional normed algebras over
reals exist only for = 0, 1, 3, 7 (real, complex, quaternion, octonion).

We call (16.10 the alternativity relation, because it can also be obtained by

substituting 6.40Q into the alternativity condition for octonions(4]

[zyz]=(zy)z — x(yz),

[xyz]=[zay] = [yzx] = — [yzz] . (16.45)
Cartan [13 was first to note thaf?»(7) is the isomorphism group of octonions,,
the group of transformations of octonion bases (writteretierthe infinitesimal
form)

e; - (5ab + iDab)eb ’

which preserve the octonionic multiplication rul&g(40. The reduction identity
(16.19 was first derived by Behrendsal. [18], in index notation: see their equation
(V.21) and what follows. Tits also constructed the adjoeyp projection operator
for G2(7) by defining the derivation on an octonion algebra as

Dz = (z,4)2 = —3 (@) ) + 5[y 2)e — 2,2}y
[Tits 1966, equation (23)], where

€, ey = fabceca (1646)
(eq,€p) = —dap- (16.47)
Substitutingr = x,e,, we find
1 1
(Dz)d = _3xayb (§6ab6bd + gfabefecd) Ze - (1648)

The term in the brackets is just tli&;(7) adjoint rep projection operatd® 4 in
(16.13, with normalizatiomx = —3.
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Chapter Seventeen

Ey family of invariance groups

In this chapter we continue the construction of invarianoeigs characterized by a
symmetric quadratic and an antisymmetric cubic primitiwariant. In the preceding
chapter we proved that the cubic invariant must eitherfydtlis alternativity relation
(16.11), or the Jacobi relationd(49, and showed that the first case 43(3) and
G4 as the only interesting solutions.

Here we pursue the second possibility and determine altismwvee groups that
preserve asymmetric quadraticZg and an antisymmetric cubic primitive invariant

(4.46),
/k = i (17.1)

with the cubic invariant satisfying the Jacobi relatidm/@
>—< - /X\ = ;( (17.2)

1. Enumerate all Lie algebras defined by the primitiiesJ). The key idea here
is the primitiveness assumptio® 89. By requiring that the list of{7.7) is the
full list of primitive invariants,i.e., that any invariant tensor can be expressed
as a linear sum over the tree invariants constructed frongtiaeratic and
the cubic invariants, we are classifying those invariarreeigs for whichno
quartic primitiveinvariant exists in the adjoint rep (see figu@.1).

Our task is twofold:

2. Demonstrate that we can compute3alj coefficients (or casimirs, or vacuum
bubbles); the ones up to J2are listed in tablé. 1 Due to the antisymmetry
(17.7) of structure constants and the Jacobi relatibn®, we need to con-
centrate on evaluation of only the even-order symmetrinvies a subset of

(7.13:
ﬁ (17.3)
HH HHH

Here cheating a bit and peeking into the list of the Betti narslftabler.1)
offers some moral guidance: the orders of Dynkin indicesifef’s group are
2,8,12,14,18, 20, 24, 30. In other words, there is no way radrrdtracking
is going to take us to the end of this road.
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We accomplish here most of 1: the Diophantine conditidns3—(17.19 and
(17.39—(17.4Q yield all of the E5 family Lie algebras, and no stragglers, but we
fail to prove that there exist no further Diophantine coiotis, and that all of these
groups actually exist. We are much further from demonstga®i: the projection
operators17.19, (17.16, (17.30)—(17.33 for the Eg family enable us to evaluate
diagrams with internal loops of length 5 or smaller, but weehao proof that
anyvacuum bubble can be so evaluated. Should we be intimidatedistence of
Dynkin indices of order 30? Not necessarily: we saw that dagsical Lie group
vacuum bubble can be iteratively reduced to a polynomial,inegardless of the
number of its Dynkin indices. But faFy, Eg, F7, andEs such algorithms remain
unknown.

As, by assumption, the defining rep satisfies the Jacobigrl@t7 .2, the defining
rep is in this case alsd, the adjoint rep of some Lie group. Hence, in this chapter
we denote the dimension of the defining rep/Mythe cubic invariant by the Lie
algebra structure constantsC};;, and draw the invariants with the thin (adjoint)
lines, asin{7.) and (L7.2.

The assumption that the defining rep is irreducible meartssrcase that the Lie
group is simple, and the quadratic casimir (Cartan-Killigsor) is proportional to
the identity

=y (17.4)

In this chapter we shall choose normalizati@n = 1. The Jacobi relationl(7.2
reduces a loop with three structure constants

= %/K (17.5)

Remember diagrani(1)? The one diagram that launched this whole odyssey? In
order to learn how to reduce such 4-vertex loops we turn tadmmposition of
the A® A space.

In what follows, we will generate quite a few irreducible sefn order to keep
track of them, we shall label each family of such reps (fomepte, the eigenvalues
Am: A in (17.12) by the generalized Young tableau (or Dynkin label) notati
for the Es irreducible reps (sectioh7.4). A review of related literature is given in
section21.2

17.1 TWO-INDEX TENSORS

The invariance group of the quadratic invariah? (I) alone isSO(n), so as in
table10.1, A® A decomposes into singlet, symmetric, and antisymmetriszades.

Of the three possible tree invariantsdw A — A® A constructed from the cubic
invariant (L7.1), only two are linearly independent because of the Jacd#iioa
(17.2. The first one induces a decomposition of antisymmetric A tensors into
two subspaces:

R Y
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w0 C{TT-w0 G amo

1=Py +Pg+P.+P,.

As the other invariant matrix ill® A — A® A we take
i —eo—— |

Qijrl =

]—cpik.

(17.7)

By the Jacobi relationl(7.2), Q has zero eigenvalue on the antisymmetric subspace

— 1 1
QPg = | I Py = 5>_<PH = PPy =0, (17.8)

s0Q can decompose only the symmetric subspace’3ym

The assumption that there exists no primitive quartic iiargris thedefining
relation for the E5 family. By the primitiveness assumption, the 4-index loop i
variantQ? is not an independent invariant, but is expressible in tesframy full
linearly independent set of the 4-index tree invaridis e, C;jm Cmie, andd;;’s
constructed from the primitive invariants4.1),

+A4“7+B>—<+C +D ) C+E><:O.

Rotate byd0® and compare. That eliminates two coefficients. Flip any piadja-
centlegs and use the Jacobi relatiai.Q) (i.e., the invariance condition). Only one
free coefficient remains:

1 ——— q _
(17.9)
Now, trace over a pair of adjacent legs, and evaluate 2- aodBs using 7.4
and (L7.5. This expresses the paramegen terms of the adjoint dimension, and
(17.9 yields the characteristic equation f@rrestricted to the traceless symmetric

subspace,

1 5
- -Q--———1)P,=0. 17.10
(Q 6Q 3(N +2) ) ( )
An eigenvalue ofQ satisfies the characteristic equation

1 5
2__ —_—— =
G 3(N +2) 0,

so the adjoint dimension can be expressed as

6 6— A1
As we shall seek for values ofsuch that the adjoint rep dimensidhis an integer,
it is natural to reparametrize the two eigenvalues as

1 1 m
mETETe T Em-s’

5 6— A1 6
N+2_m_60{7—2+7}. (17.11)

(17.12)
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a form that will lend itself to Diophantine analysis. In tesif the parametern, the
dimension of the adjoint representation is given by

N =—2+60(m/6—2+6/m), (17.13)

and the two eigenvalues map into each other und& — 6/m. Substituting

Ao — \m =z —— (17.14)

:_65;”7;66) {I _ %% }PS (17.15)
_ 6(77%_66) {j n mL_G }PS . (17.16)

In order to compute the dimensions of the two subspaces, ataae

@ 1 N +2
trP,Q = ~vo =5 (17.17)

(N+2)(1/)a+N—1)
20 = Am/Mm)

Dimensionig is obtained by interchanging andA\—. Substituting{7.13, (17.19
leads to

and obtain

5(m — 6)2(5m — 36)(2m — 9)
m(m + 6)

~ 270(m — 6)*(m — 5)(m — 8)

N m?(m + 6)

dm=

dm (17.19)
To summarize, in absence of a primitive 4-index invariah A decomposes
into five irreducible reps

1=Py+Pg+P,+P + Py (17.20)

The decomposition is parametrized by rational values gdnd is possible only for
integerN anddg that satisfy the Diophantine conditionk7.13, (17.19.

This happened so quickly that the reader might have missediithomework
problem is done. What we have accomplished by.9 is the reduction of the
adjoint rep 4-vertex loop in1(.1) for, as will turn out,all exceptional Lie algebras.
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17.2 DECOMPOSITION OF Sym*4

Now that you have aced the homework assignmeni},(why not go for extra credit:
can you disentangle vacuum bubbles whose shortest loogesgth 6,

zz _ (17.21)

If you have an elegant solution, let me know. But what follovest is cute enough.

The general strategy for decomposition of higher-rankdepsoducts is as fol-
lows; the equation](7.1Q reduce€Q? to Q, P,. weighted by the eigenvalues,

Am- For higher-rank tensor products, we shall use the samét tesdecompose
symmetric subspaces. We shall refer to a decomposition misitaresting” if it
brings no new Diophantine condition. &A% acts only on the symmetric subspaces,
decompositions of antisymmetric subspaces will always fiateresting, as was
already the case irl{.8. We illustrate this by working out the decomposition of
Synt A.

The invariance group of the quadratic invariaf? (I) alone isSO(N), with
the seven reps Clebsch-Gordan decomposition ofthéN) 3-index tensors (ta-
ble 10.4): one fully symmetric, one fully antisymmetric, two copiesthe mixed
symmetry rep, and three copies of the defining rep. As thebhiaetation (L7.2
trivializes the action ofQ on any antisymmetric pair of indices, the only serious
challenge that we face is reduciag® within the fully symmetric SymA subspace.

As the first step, project out thé and A® A content of SymA:

3

6(N +1)(N ] ol
PI= S ran - 5 I aK I (17.23)

P, projects out Syrh4 — A, andPH projects out the antisymmetric subspace
(17.9 Syn? A — VH' The ugly prefactor is a normalization, and will play no role
in what follows. We shall decompose the remainder of the Syspace

P.=S—Py— PH = (17.24)
by the invariant tensa® restricted to thd,. remainder subspace

Q- 1 . Q:ﬂ ! EQ:PTQPT. (17.25)

We can partially reduc€)? using (L7.10, but symmetrization leads also to a new

invariant tensor,
QQ:%ﬂ ] Ej%ﬂ lI E (17.26)

A calculation that requires applications of the Jacobitieta(17.2, symmetry

identities .63 such as
E E —0, (17.27)

* o

‘W'
*—»
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and relies on the fact th&, contains na4, A® A subspaces yields

As _ LT 20T
Q3_§{--. -E+3{--IE. (17.28)

Reducing by {7.10 and usingjk. + A\ =1/6leads to

Qt%{%qugﬂ ! ! E}—A.AEQ. (17.29)

The extra tensor can be eliminated ly (26, and the result is a cubic equation for

Q:

N 1 . R
0= (Q a 1_81) (Q - A-l) (Q - Aml) P,. (17.30)
The projection operators for the corresponding three sadespare given byd(49
1 S ~
Pe= (1/18 — \g) (1/18 — A\p) (Q - A-1) (Q - Am1) P,
. 162(m —6)? " 1. 6m
~ (m+3)(m+12) (Q _EQ_m1> P, (17.31)

Pon= e =17 oy (@ 1) (@) P a7

~ 54(m—6)? A m—24 . 1
5 e (@ W W) P

L p— 1/181) e <Q - 1—181> (Q - )\.1) P,  (17.33)

2
108 (m — 6) (Qz_z(m—?))QJF 1>P7~-
(m +6)(m + 12) 9(m — 6) 108(m — 6)
The presumption s (still to be proved for a general tensotpct) that the interesting
reductions only occur in the symmetric subspaces, alway#nwQ characteristic
equation £7.10. As the overall scale of) is arbitrary, there is only one rational
parameter in the problem, eithef /\g Or m, or whatever is convenient. Hence all

dimensions andn-j coefficients (casimirs, Dynkin indices, vacuum bubbled) wi
be ratios of polynomials im.

To proceed, we follow the method outlined in appendipxOn P, PH subspaces
SQ has eigenvalues

SQPD_ﬂ ! E _ % A, = 1/3 (17.34)
SQPH_E Rﬁ = é ='a — Ay =1/6, (17.35)

so the eigenvalues are; = 1/3, )‘H =1/6, 3 = 1/18, \rm = A\cos A = Aroe
The dimension formulag\(8) require evaluation of

*—e

r Q= _ —w (17.36)
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tr(SQ)* = = W . (17.37)

Substituting into A.8) we obtain the dimensions of the three new reps:

_27(m — 5)(m — 8)(2m — 15)(2m — 9)(5m — 36)(5m — 24)
dm = m2(3 +m)(12 + m) (17.38)

~10(m — 6)*(m — 5)(m — 1)(2m — 9)(5m — 36)(5m — 24)
drm= 3m2(6 +m)(12 + m) (17.39)

_ 5(m —5)(m —8)(m —6)*(2m — 15)(5m — 36)
ds= 3@ T m)(6 £ m) (36 —m).  (17.40)

17.3 DIOPHANTINE CONDITIONS

As N in (17.13 is an integer, alloweeh are rationalsn = P/Q built from @ any
combination of subfactors of the denomingi6o = 1-23-32-5, and the numerator
P = 1,2,0r5,wherePand(Q are relative primes. The solutions are symmetric under
interchangen /6 <+ 6/m, so we need to check only the 23 rationals> 6. The
Diophantine conditionsl(7.13, (17.19, and (L7.39 are satisfied only fom = 5,
8,9, 10, 12, 18, 20, 24, 30, and 36. The solutions that suntigeDiophantine
conditions form thezg family, listed in tablel7.1 The formulas{7.19, (17.19
yield, upon substitution aV, A\-; and\g, the A® A Clebsch-Gordan series for the
Eg family (table17.2.

Particularly interesting is th@36 — m ) factor in theds formula (1L7.4Q: positivity
of a dimension excludes: > 36 solutions, and vanishing of the corresponding
projection operatorl(7.33 for m = 36 implies a birdtrack identity valid only for
Eg, the presumed key to the homework assignmétZ]). For inspiration, go
through the derivation of18.3%, the analogous 6-loop reduction formula .
According to ref. P95, the smallest vacuum bubble that has no internal loop with
fewer than six edges has fourteen vertices and is calleddbgeéter graph.”

Birdtracks yield theFs family, but they do not tie it into the Cartan-Killing
theory. For that we refer the reader to the very cléat and thorough exposition
by Deligne B9]. All the members of the family are immediately identifiablgth
exception of then = 30 case. Then = 30 solution was found independently by
Landsberg and ManivePDq, who identify the corresponding column in tallé.1
as a class of nonreductive algebras. Here this set of snknidl be eliminated by
(19.42, which says that it does not exist as a semisimple Lie algédrthe Fy
subgroup offg.

The main result of all this heavy birdtracking is thét> 248 is excluded by the
positivity of d3, and N = 248 is special, a®3 = 0 implies existence of a tensorial
identity on the SymA subspace specific tBg. That dimensions should all factor
into terms linear inm is altogether not obvious.
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m 5 8 9 10 12 15 18 24 30 36
A1 Az G2 D4 F4 Ea E7 . Eg
N 0 3 8 14 28 52 78 133 190 248
ds 0 0 1 7 56 273 650 1,463 1,520 0
dg 0 -3 0 64 700 4,096 11,648 40,755 87,040 147,250
dm |0 0 27 189 1,701 10,829 34,749 152,15292,445 779,247

Table 17.1 All solutions of Diophantine conditiors7(13, (17.19, and (L7.38.

17.4 DYNKIN LABELS AND YOUNG TABLEAUX FOR Ejg

A rep of Es is characterized by 8 Dynkin labels;asasasasasaras). The cor-
respondence between tiig Dynkin diagram from tabl&.6, Dynkin labels, irre-
ducible tensor Young tableaux, and the dimensians]of the lowest reps is

8

4 (a1a2a3a4a5a6a7ag) <~ (1741)

1 2 3 45 6 7

D,H@E amo| -

(248, 30380, 2450240, 146325270, 6899079264, 6696000, 3875, 147250)

Labela; counts the number of not antisymmetrized defining (= adjogpresen-
tation indices. Labels, throughas count the number of antisymmetric doublets,
triplets, quadruplets, and quintuplets, respectiveljdla, counts the number of
not antisymmetrizelj indices, andis the number of its antisymmetrized doublets.
The labelag counts the number (.



mkin = O T _
Dynkin labels
FEs (10000000) ® (10000000) = (10000000) (01000000) +  (00000000) +  (20000000) + (00000010)
Er (1000000) ® (1000000) = (1000000) (0100000)  +  (0000000) +  (2000000)  + (0000100)
Es (000001) ® (000001) = (000001) (001000)  +  (000000)  +  (000002)  + (100010)
Fy (1000) ® (1000) = (1000) (0100) + (0000) + (2000) + (0010)
Dy (0100) ® (0100) = (0100) (1010) + (0000) + (0200) + (2000) + (0001)
G» (10) ® (10) = (10) (03) + (00) + (20) + (02)
Ay (11) @ (11) = (11) (12) + (21) + (00) + (22) + (11)
Ay (2)®(2) = (2) (0) + (4) + (4)
Dimensions N? = N -8 4 1 + dm + du
Fs 2482 = 248 30, 380 + 1 + 27,000 + 3,875
Er 1332 = 133 8,645 + 1 + 7,371 + 1,539
FEs 782 = 78 2,925 + 1 + 2,430 + 650
Fy 522 = 52 1,274 + 1 + 1,053 + 324
Dy 282 = 28 350 + 1 + 300 +  35+35+35
G2 147 = 14 7 + 1 + 77 + 27
Ay 82 = 8 0+10 + 1 + 27 + 8
Ay 32 = 3 0 + 1 + 5 + 0

Table 17.2 Eg family Clebsch-Gordan series fer® A. Corresponding projection operators are giverlin@, (17.19, and (L7.16.

Aloayldnoio

TTOZ ‘8 Udy ‘T°0’6 UOISIDA
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O] = O+ H + « +0+ W
2482 = 27000 + 30380 + 1 + 248 + 3875
Jelm = O + B + H +[(W+ B
248 - 3875 = 248 4+ 3875 + 30380 47792474 147250
TeO =0+ H+ 0 ++ H +m
27000 - 248 = 1763125 + 4096000 + 248 + 27000 + 30380 + 779247
He - +@+D+H+D]+l
+ W+ O
30380 - 248 = 4096000 + 2450240 + 248 + 30380 + 27000 + 3875
+ 779247 4147250
EcE - EE ¢ - ¢ ([ W+ @ +
+ = + H + [ +[N
38757 = 4881384 + 1 + 27000 + 3875 + 2450240 + 147250
+ 6696000 + 30380 + 248  + 779247
oM - (TH+ (W + | +@+[.+D
f[O+ H + =
el =@+ ] +-m+m+ 4 +m
Tlel =TI+ +Tm-mm+ g ~H

+ +E.+Dj+‘

-

+@+[.+D+H

Table 17.3 Some of the low-dimensiong} Clebsch-Gordan series}4].
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Chapter Eighteen

Eg family of invariance groups

In this chapter, we determine all invariance groups whoiseifive invariant tensors
ared? and fully symmetrial,,.., d**°. The reduction ol ® V' space yields a rule
for evaluation of the loop contraction of fodrinvariants (8.9. The reduction of
V&V yields the first Diophantine condition®.13 on the allowed dimensions of the
defining rep. The reduction &f®V @V tensors is straightforward, but the reduction
of A®V space yields the second Diophantine conditidn i( table 18.4 and
limits the defining rep dimension te < 27. The solutions of the two Diophantine
conditions form thezs family consisting offg, A5, As + As, andA,. For the most
interestingEs, n = 27 case, the cubic casimif.8.49 vanishes. This property of
Eg enables us to evaluate loop contractions dfi6variants (8.37, reduceV ® A
tensors (tablé8.5, and investigate relations among the higher-order casiofi&s

in section18.8 In sectionl8.7we introduce a Young tableau notation for any rep of
Eg and exemplify its use in construction of the Clebsch-Gostates (tabld.8.6).

18.1 REDUCTION OF TWO-INDEX TENSORS

By assumption, the primitive invariants set that we shailigthere is

§y=a—e—>b
a a

dape = A = dpge = dacb s dabc = A . (181)

b c b c
Irreducibility of the defining:-dimensional rep implies

bed d
dabcd ¢ :a(Sa

—<—O—<—:a —_— (18.2)

The value ofa depends on the normalization convention. For example,dereu
thal [13(] takesa = 5/2. Kephart [L87] takesa = 10. We find it convenient to set
ittoa = 1.

We can immediately write the Clebsch-Gordan series for {inelx tensors. The
symmetric subspace i9 () is reduced by thd,;.d°?¢ invariant:

i B o e SR

The rep dimensions and Dynkin indices are given in tagld.
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——
- I T
« «
Jed = H e m e 1]
Es (000010) ® (000010) = (000100) & (100000) @ (000020)
As (00010) ® (00010) = (00101) & (01000) & (00020)
Ao (02) ® (02) = (12 @ (20) @ (04)
dimension n? =nn—-1)/2 + n + n(n—1)/2
Es 272 = 351 + 27 + 351
As 152 = 105 + 15 + 105
Ao+ Ay 92 = 36 + 9 + 36
As 6> = 15 + 6 + 15
index 2n/ = (n—2)¢ + 4 + (n+1)¢
Fs 2-27-1 = z + 1 + 7
— 3 6
A5 2ed =B+ L "
As + Ao 2:-9- % = % + % + 5
5 — 0 5 35
Az 2:6-5 = 3t 3 * %

Table 18.1F family Clebsch-Gordan series Dynkin labels, dimensiond,2ynkin indices
for V@V The defining rep Dynkin inde&is computed in18.14).

By the primitiveness assumption, aliy © V2 invariant is a linear combination
of all tree invariants that can be constructed from the pives:

Ezi D D4 (18.4)
In particular,

One relation on constants, B follows from a contraction witls?:

P R A

1
1:A+Bn;.

The other relation follows from the invariance conditi@S3 on dp.:

é_(_d‘}_(_:_%_i_ (18.6)
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= D¢
B —

label Lol = . ® X e N

Es (000010) ® (100000) = (000000) & (000001) @ (100010)

As (00010) ® (01000) = (00000) @ (10001) @  (01010)

As (02) ® (20) = (00 @& (1) & (22

dimension n2 = 1 + nlnc) oy “”ﬁii)"“”

Fs 272 = 1 + 78 + 650

Asg 152 = 1 + 35 + 189

As + Ay 92 = 1 + 16 + 64

As 62 = 1 + 8 + 27

index onl = 0 + 1 v Aty

Es 2.27- 1 = 0 + 1 +  50-1

As 2-15- 3 = 0 + 1 + 271

Az + Ay 2-9-1 = 0 + 1 +  16-1

As 2-6-2 = 0 + 1 + &

PA:g{:n%{;@c X
po- D~ { T -2D :%}

Table 18.2E; family Clebsch-Gordan series fof@ V. The defining rep Dynkin indekis
computed in{8.19.

Dlw

Contracting (8.9 with (7)., we obtain
“ ﬁ ‘g)\\ j—
A B
Z__5+5’ = 7(n+3) B_n+3. (18.7)

18.2 MIXED TWO-INDEX TENSORS

Let us apply the above result to the reductioofV tensors. As always, they split
into a singlet and a traceless pa®t4). However, now there exists an additional
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b d
=K (18.8)
a C

which, according toX8.5 and (L8.7), satisfies the characteristic equation

T30 C }
_)_
1n—3 1 3
Q*=- 2n+3Q+5?(T+1) (18.9)

On the tracelest ® V subspace, the characteristic equation@otakes the form

1 3

wherePs is the traceless projection operatGrE(él). The associated projection op-
erators 8.48 are

invariant matrix

Q- Q+3
Py=—"2P,, Pp= 372P2 (18.11)
T2 nt3 n+3

Their birdtracks form and their dimensions are given meam.z

P4, the projection operator associated with the eigenval@eis the adjoint rep
projection operator, as it satisfies the invariance comdii8.6. To compute the
dimension of the adjoint rep, we use the relation

T (] e

that follows trivially from the form of the projection opeca P, in table18.2 The
dimension is computed by taking trac %2,

dn(n — 1)
N = . 18.13
® n—|—9 ( )

The 6+ coefficient, needed for the evaluation of the Dynkin indéx{), can also
be evaluated by substituting&.12 into

000

The Dynkin index for theg family defining rep is

B I1n+9
T 6n—3°

-C=01

(18.14)

18.3 DIOPHANTINE CONDITIONS AND THE Eg FAMILY

The expressions for the dimensions of various reps (seedéblthis chapter) are
ratios of polynomials im, the dimension of the defining rep. As the dimension of a
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rep should be a nonnegative integer, these relations ai@idpdantine conditions
on the allowed values ot. The dimension of the adjoint red§.13 is one such
condition; the dimension df; from table18.4another. Furthermore, the positivity
of the dimensiond, restricts the solutions ta < 27. This leaves us with six
solutionsin = 3,6,9, 15,21, 27. As we shall show in chapterl, of these solutions
only n = 21 is spurious; the remaining five solutions are realized agihew of
the Magic Triangle (figuré..1).

In the Cartan notation, the corresponding Lie algebrasiareds + Ao, A5, and
Eg. We do not need to prove this, as fag Springer has already proved the existence
of a cubic invariant, satisfying the relations required by construction, and for the
remaining Lie algebras the cubic invariant is easily carterd (see sectiob.9).
We call these invariance groups thg familyand list the corresponding dimensions,
Dynkin labels, and Dynkin indices in the tables of this cleapt

18.4 THREE-INDEX TENSORS

TheV®V ®V tensor subspaces 6f(n), listed in table9.1, are decomposed by

invariant matrices constructed from the cubic primitiyg. in the following manner.

18.4.1 Fully symmetricV®V ®V tensors

We substitute expansion from taldl8.1into the symmetric projection operator
FE-IPgE-{FE- TR

TheV ®V subspace is decomposed by the expansion of b

IS 13 €0 3D7ER 3D €F

The last term vanishes by the invariance conditb88. To get the correct projector
operator normalization for the second term, we compute

l]E Blj_} ealj 2 Cgl]
3 *3

1 3 n+9
1 2— o - m | (18.16
3< + ) Sy a) - 1810

Here, the second term is given by tilE-subspace eigenvalugégd.10Q of the in-
variant matrixQ from (18.9. The resulting decomposition is given in talile.3

18.4.2 Mixed symmetryV @V ®V tensors

The invariantd,. (T;)¢ satisfies

r’ﬁ @ (18.17)



Oeded=[TJe M e « o1 eolMle X o[- eMleXe -

Dynkin labels

Es (000010)® =(000030)5 (100010)5 (000000)E (0001 10y &(000001)B ® ® (001000)

As (00010)® = (00030)&> (01010) (00000)& (00111)é @ (10001)&® ® ® (00200)5(01002)
As (02)°= (06) @ (22) @ (00) & (14) @ ® (11) o & & (03)1(30)
Dimensions nf‘:”mz(:}ig;*"') + <”+f§,32+<9n*1) I QISR G R 1) + + nn—1)n-2)
Fs 27%= 3003 + 650 + 1 + 5834 + + 78 + + + 2925
As 155= 490 + 189 + 1 + 896 + + 35 + + + 175+ 280
Az 6= 28 + 27 + 1 + 35 + + 8 o+ + + 10 +10

Projection operators

p-dE P -». pooeniBoal ey & I e
R e oLl ol e T

Table 18.3E family Clebsch-Gordan series fof@V @V, with Il ] defined in tablel8.2 The dimensions and Dynkin labels of repeated reps arelliste
only once.

SI=

Aoayldnoio

TTOZ ‘8 |Udy ‘T°0°6 UOISIOA
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This follows from the invariance conditio6.63):

nAA A

Hence, the adjoint subspace lies in the mixed symmetry sudespprojected by
(9.10. Substituting expansions of tabl&8.2and18.3 we obtain

SR S e TR R S i
P IPGE() € we

The corresponding decompositionis listed in takBel The other mixed symmetry
subspace from tabk. 1 decomposes in the same way.

18.4.3 Fully antisymmetricV @ V®V tensors

All invariant matrices on®V?3 — ®V?3, constructed fromd,,. primitives, are
symmetric in at least a pair of indices. They vanish on thé fahtisymmetric
subspace, hence, the fully antisymmetric subspace in$abigirreducible forF.

18.5 DEFINING ® ADJOINT TENSORS

We turn next to the determination of the Clebsch-Gordaresdarl’ @ A reps. As
always, this series contains thedimensional rep

o<

1= P, + P; (18.19)
Existence of the invariant tensor

:E: (18.20)

implies thatl’®A also contains a projection onto thedV” space. The symmetric rep
in (18.3 does not contribute, as thkg,. invariance reduced 8.20 to a projection

onto theV space:
1
l =-3 . (18.21)

The antisymmetrized part 018.20),

R = II: R = :I:l: : (18.22)
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projects out thé” @ V' antisymmetric intermediate state, as18(3:

p,= "9 pp :”+9:£:[:1: >_>.< (18.23)
6 a«a 6ac

Here the normalization factor is evaluated by substitutimg adjoint projection
operatorP, (table18.2) into

6
T = =
LS PN (e I

In this way,P5 in (18.19 reduces t®; = P, + P,

P, — - %}«-{ - >E-< (18.25)

However,P . subspace is also reducible, as there exists still anoth@riant matrix

onV ® A space:
Q- lFi;. (18.26)
a

We computeQ?P,. by substituting the adjoint projection operator and drogghe
terms that belong to projections oritoandV ® V' spaces:

1
PQ'= P )
6 — 1 n+3 5
:PC — . —
n—|—9{—(—+3 0 3aq }
6 n+3
=P, 1- —<—; ;—<——0
n—|—9{ 3ax }

6 n+3
=P. 1
n—|—9{ + 3ax I}
6 n+31
=P, 1- — 0, . 18.27
n+9{ 6 aK+ } ( )

The resulting characteristic equation is surprisinglyan

P.(Q+1) (Q _ ni) —0. (18.28)

+9

The associated projection operators and rep dimensionisiae in tablel18.4

The repV} has dimension zero for = 27, singling out the exceptional group
Eg(27). Vanishing dimension implies that the corresponding mtipa operator
(4.22 vanishes identically. This could imply a relation betwdem contractions of
primitives, such as th€'s alternativity relation implied by the vanishing df§.30.
To investigate this possibility, we expailty from table18.4

We start by using the invariance conditions and the adjaiojegtion operator
P, from table18.2to evaluate

:II: _ Z;S:_l:[ . (18.29)
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This yields

18.30
:D_)-C n -+ 9 ( )
P,— n+9 9 n—+3 H

e A = MU =2 30 O
Next, motivated by the hindsight of the next section, we @l?, in terms of the
cubic casimir 7.44). First we use invariance and Lie algeba4(?) to derive the

relation
= ! (18.31)
= y ) .

We use the adjoint projection operatdB(1]) to replace thel,;.d°? pair in the
first term,

el Qe

(18.32)
In terms of the cubic casimii7(44), the P, projection operator is given by

H _
e A
%M n /(\} . (18.33)

Substituting back into1(8.30, we obtain

p n+9 (27—n 1 n+9
4_n+15{ 6 (n+9/<\ 1 ) I}
(18.34)

We shall show in the next section that the cubic casimir, élaist term, vanishes
forn = 27. Hence, each term in this expansion vanishes separately$o27, and
no new relation follows from the vanishing &;. Too bad.

However, the vanishing of the cubic casimir for= 27 does lead to several
important relations, special to the; algebra. One of these is the reduction of the
loop contraction of Gl,;.'s. For Es (18.33 becomes

G P W= S

The left-hand side of this equation is related to a loop @f£'s (after substituting
the adjoint projection operators):

:S ] 2 —ﬁjd—g:g Z (18.36)
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The right-hand side ofl8.35 contains no loop contractions. Substituting the adjoint
operators in both sides 0f8.35, we obtain a tree expansion for loops of length 6

Ee: — = (18.37)

500

_%{l‘fz‘Jr%Jr + + + }

At the time of writing this report, we lack a proof that we camtpute any scalar
invariant built fromd,;. contractions. However, the scalar invariants that we might
be unable to compute are of very high order, bigger than amytisted in tables.1,
as their shortest loop must be of length 8 or longer, with 138 kaan 30 vertices
in a vacuum bubble. (See table 2 in ref9f] for the minimal number of vacuum
bubble vertices for a given shortest loop, or “girth.")

The Dynkin indices (tablé 8.4 are computed using/(29 with A = defining
rep,u = adjointrep,o = A3, \q

¢ 1 2¢
(e 2y a5.30
0

The value of the g-coefficient follows from {8.29, the eigenvalues of the exchange
operatorQ.

18.6 TWO-INDEX ADJOINT TENSORS

A® A has the usual starting decompositid7 (7). As in sectior9.1, we study the
index interchange and the index contraction invarighasndR:

Q:X’ R:II' (18.39)



ARV = \% @ Vs @ Vs ©® Va

Aloayldnoio

Dynkin labels X e[ ] = [] & = & [ X

Eg (000001)® (000010) = (000010) & (010000) &  (000011)

As (10001)® (00010) = (00010) & (10100) &  (10011) & (00002)
As (11) ® (02) = 02 o (21) @ 13) @ (10)

A . — n(n—1 An(n+1)(n—3 n(n—1)(n—3)(27—n
Dimensions nN = n + o onesl oy Anletled oy <2<n)+<9)(n¥15) )
Es 2778 = 27 + 351 + 1728 + 0
As 15-35 = 15 + 105 + 384 + 21
As + As 9-16 = + 36 + 90 + 9
Ao 6-8 = + 15 + 24 + 3
Dynkin indices n+ N¢ = ( + (-2 + EULES (nBaTon)
Es 27+ I8 = 1 + 2 + 40 + 0
Ay S ST S T
Aot o I :

4 +% = F o+ B+ B+

Projection operators

yo 1 T 6 BE ‘
— n — n+¢
P, = m>“—< ’ P, = n+15 {E + ote }

——L —_—

Py

I
ij
Il

Q=
Q=
v

Il

EE

B

|
IED

TTOZ ‘8 Udy ‘T°0’6 UOISIDA

Table 18.4F family Clebsch-Gordan series fat@ V.
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The decomposition induced B, follows from tablel8.2 it decomposes the sym-
metric subspacP

1 1 |

By (9.80 R has no effect on the antisymmetric subspd2gsP,. The correspond-
ing projection operators are normalized by evaluating

OO ="

a® - 2(n+9)2

1 O B 12(n-3) mO
SO O Ty T wa

Such relations are evaluated by substituting the Clebsutuléh series of table8.2

into H,which yields
N R R e

Equation (8.4 then follows by substitution into

a®(n+1)(n—27)
g 9 I R o

ThIS |mpI|es that the norm of the cubic casimitr44) is given by

3(n+1)(27—n)
dijrdijk = =4— . (18.43
i XSG O [O- w0 o

Posmwty of the normrestricts < 27. For Eg (n = 27), the cubic casimir vanishes

identically:
Eg : )\ =0. (18.44)

18.6.1 Reduction of antisymmetric three-index tensors

Consider the clebsch for projecting the antisymmetric pabs ofl @V @V onto
A® A. By symmetry, it projects only onto the antisymmetric stdzspofA® A:

EEI _ H[ (18.45)

Furthermore, it does not contribute to the adjoint subspace

E}:_ﬂ+ﬂ:o. (18.46)

That both terms vanish can easily be checked by substittiisgdjoint projection
operator (tabld.8.2. Furthermore, by substitutind.8.37 we have

1
Es n=2T: EB:EEE:%EEE (18.47)

This means that foFg rep% and fully antisymmetrized 3-index tensors are equiv-
alent.



ARA = %1 Va <) V3 &) Vi <) Vs <) Ve <) V7
label ReX = e e W] ° XX o X o %
Eg (000001)%> = (000000) + (100010) + (000002) + (000001) + (00100)
As (10001)2 = (00000) (10001) + (01010) + (20002) + (10001) + (01002) + O@E
Ao (11)2 = (00) (12) + (22) + (12) + (03) + (30)
dimension N2 = 1 N(1=Gnoy) + 50Dy + N +
Fg 782 = 1 0 + 650 + 2430 + 78 + 2925
As 35% = 1 35 + 189 + 405 + 35 + 280 + 280
As + Ay 162 = 1 16 + + + 16 + 52 + 52
As 82 = 1 8 + 0 + 27 + 8 + 10 + 10

Projection operators fafs (n = 27):

rew)

, P, = -P1-P3 )

neg TORO T e

Table 18.5F family Clebsch-Gordan series df® A.

Aloayldnoio

TTOZ ‘8 Udy ‘T°0’6 UOISIDA
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18.7 DYNKIN LABELS AND YOUNG TABLEAUX FOR Ej

Arep of E is characterized by six Dynkin labéls,; axasasasag). The correspond-
ing Dynkin diagram is given in tablé.6. The relation of the Dynkin labels to the
Young tableaux (section.9) is less obvious than in the case<if (n), SO(n), and
Sp(n) groups, because fdts they correspond to tensors made traceless also with
respect to the cubic invariadt,..

The first three labels, , a2, a3 have the same significance as for the:) Young
tableaux.a; counts the number of (not antisymmetrized) contravariadices
(columns of one bom). a; counts the number of antisymmetrized contravariant
index pairs (columns of two boxg. a3 is the number of antisymmetrized covari-
ant index triples. That is all as expected, as the symmatviariantd,,. cannot
project anything from the antisymmetric subspaces. Thahisthe antisymmetric
reps in tablel8.1and tablel8.3have the same dimension as Kl (27).

However, according to18.47, an antisymmetric contravariant index triple is
equivalent to an antisymmetric pair of adjoint indices. Ercontrary to thé/ (n)
intuition, this rep isreal. We can use the clebsches frof8(47) to turn any set of
3p antisymmetrized contravariant indices iptadjoint antisymmetric index pairs.
For example, fop = 2 we have

oall Nox

Hence, a column of more than two boxes is always reduced ra@dok:; antisym-
metric adjoint pairs (in the above examplg= p), that we shall denote by columns
of two crossed box

In the same fashion, the antisymmetric covariant inakédples contribute tas,
the number of antisymmetric adjoint pa% a4 antisymmetrized covariant index
pairsH, andas (not antisymmetrized) covariant indices

Finally, taking a trace of a covariant-contravariant ingi@x implies removing
both a singleandan adjoint rep. We shall denote the adjoint repbyrhe number
of (not antisymmetrized) adjoint indices is given by. For example, arbU (n)
tensorzy € V@V decomposes into three reps of tabi2 The first one is the
singlet (000000), that we denote by The second one is the adjoint subspace
(0000001) = K. The remainder is labeled by the number of covariant indices
a1 = 1, and contravariant indices, = 1, yielding (100010) = W] rep.

Any set of2p antisymmetrized adjoint indices is equivalenp®ymmetrizeg@airs
by the identity

1
2
» : :

This reduces any column ofthr rmore antisymmetric indices. We conclude that
any irreducibleF tensor can, therefore be specified by six numbers., ...
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An Ej tensor is made irreducible by projecting out all invariambspaces. We
do this by identifying all invariant tensors with right iregis and symmetries and
constructing the corresponding projection operatorsxamglified by tables8.1
through18.5 If we are interested only in identifying the terms in a Cleib$Sordan
series, this can be quickly done by listing all possible mmishing invariant pro-
jections (many candidates vanish by symmetry or the inmagaconditions) and
checking whether their dimensions (from the Patera-Sdn&bles 74) add up.
Examples are given in tabli3.6

To summarize, the correspondence betweenHhdynkin diagram from ta-
ble 7.6, Dynkin labels, irreducible tensors, and the dimensiorth@iowest corre-
sponding reps is

6
— (al, as,as, a4, as, CLG) —

1 2 3 4 5§

(.,I,%,H,D,g) & (27,351,2925,351,27,78)  (18.50)
a1 = number of not antisymmetrized contravariant indices
az = number of antisymmetrized contravariant pairs

[ |
az = number of antisymmetrized adjoint index pairs % =l =
|

) I A

ay = number of antisymmetrized covariant pairs
as = number of not antisymmetrized covariant indices
ag = number of not antisymmetrized adjoint indices X
For example, the Young tableau for the rep (2,1,3,2,1,2peatrawn as
L DI (18.51)
The difference in the number of the covariant and contravaindices
ai + 2as — 2a4 — as (m0d3) (1852)

is calledtriality . Modulo 3 arises because of the conversion of antisymnteiplets
into the real antisymmetric adjoint pairs by8(47. The triality is a useful check of
correctness of a Clebsch-Gordan series, as all subspatessaries must have the
same triality.

18.8 CASIMIRS FOR Ej

In table7.1we have listed the orders of independent casimirdfpas 2, 5, 6, 8, 9,
12. Here we shall use our constructionfaf(27) to partially prove this statement.
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27 - 27 351 351 27
JeO=H +1J+m
27 - 27 = 650 1 78

Hell=H]+ « +[

351 - 27 5824 2925 650 78

HeDO=H+§ M+

27 - 351 7371 27 1728 351
me -0. 0 .x

27 - 78 1728 27 351
Jex=[x+ 0 +§

78 - 78 2925 2430 1 78 650

Moo= F +X+ ¢ + K +W
351 - 27 5824 3003 650
(e O = H +[0+ W]
27 - 351 7722 27 1728
H =L+ [ +[IX
650 - 27 7722 7371 351 351 1728 27
meO-m -8 cam |- O
331 - 78 17550 351 351 27 7311 1728
HJem=H+ 4w m
2925 - 27 51975 1728 17550 7371 351
RERERIER L

Table 18.6 Examples of th&s Clebsch-Gordan series in terms of the Young tableaux.

Various terms in the expansion correspond to projectionganious subspaces,

indicated by the Clebsch-Gordan coefficients listed onidiie.rSee table$8.1
through18.5for explicit projection operators.
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By the hermiticity of7;, the fully symmetric tensat; ;, from (18.43 is real, and

O FO -tz =0 (18.53)

By (18.43, this equals

_a® (n+1)(27—n)
CHE = . (18.54)

The cubic casimitl;;;, vanishes identicalljor E.
Next we prove that theuartic casimirfor Eg is reducible. From tablé8.1
expression for the adjoint rep projection operator we have

3 n+9 ] ——
>_>.<_n+3{— y :]i+§_(_+><}, (18.55)
which yields
3 n+9 1~
-l @ﬁ/\}

Now the quartic casimir. By the invariancg %3

-+ e

[ \ \ \
The second term vanishes by the mvanarﬁ:é@.

[ J [ ]
T T 1T
Substituting £8.32, we obtain

n+9 2

For Ejs the cubic casimir vanishes, and consequently the quarimaais a square
of the quadratic casimir:

1
Fg:tr X* = E(trX2)2 : (18.60)

Thequintic casimirtr X for Es must be irreducible, as it cannot be expressed as
a power oftr X2. We leave it as an exercise to the reader to provetthat® is
irreducible.

The reducibility oftr X7 can be demonstrated by similar birdtrack manipulations,
but as the higher irreducible casimirs are beyond manualitzlon (according to
table7.1the Betti numbers fof; are2, 5, 6, 8, 9, 128, 9, 12), this task is better
left to a computerf9.
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18.9 SUBGROUPS OFE;

Why is A2(6) in the Eg family? The symmetric 2-index re@(2) of SU(3) is
6-dimensional. The symmetric cubic invariabh8(29 can be constructed using a pair

of Levi-Civita tensors,
P! -

Contractions of severd},;.’'s can be reduced using the projection operator properties
(6.29 of Levi-Civita tensors, yielding expressions such as

A3(6) : é}«{:%{i+><—z><} (18.62)
1 4 > 15NN~—
EI_S{ R } . etc. (18.63)

The reader can check that, for example, the Springer raléti®.63 is satisfied.

Why is A5(15) in the Eg family? The antisymmetric 2-index re@® 3 of A5 =
SU(6) is 15-dimensional. The symmetric cubic invariatf (9 is constructed using
the Levi-Civita invariant§.27) for SU (6

Y wﬂv (18.64)

The reader is invited to check the correctness of the premtss assumptioh.5).
All other results of this chapter then follow.

Is Ay + A2(9) in the Eg family? Exercise for the reader: unravel thle + A,
9-dimensional rep, construct thlg,. invariant.
18.10 SPRINGER RELATION

SubstitutingP 4 into the invariance conditior6(53, one obtains th&pringer rela-
tion[315 31€

oyt

The Springer relation can be used to eliminate one of the{hossible contractions
of threed;.'s. For theG, family it was possible to redua@ny contraction of three

. (18.65)
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fabe's by (16.15; however, a single chain of threlg;,.’'s cannotbe reducible. If it
were, symmetry would dictate a reduction relation of therfor

= A !H]+[H! . (18.66)

Contracting withd,;. one finds that contractions of pairs @f.’s should also be

reducible:
=A /%—i—l ! ! . (18.67)

Contractions of this relation witli,,. andé; yieldsn = 1, i.e., reduction relation
(18.66 can be satisfied only by a trivial 1-dimensional defining rep

18.11 SPRINGER’S CONSTRUCTION OF Ej

Inthe preceding sections we have given a self-containédadiem of theEs family,
in notation unfamiliar to the handful of living experts ongtsubject. Here we
translate our results into the more established algebatation, and identify the
relations already given in the literature.

Definition (Springer B15 316). Let V, V be finite-dimensional vector spaces
paired by aninner produgt, x) (see sectiofs.1.2. Assume existence of symmetric
trilinear forms(x,y, 2), (z,9,2). If z,y € V, there exists by duality x y € V
such that

3x,y,2z) = (& X y,2), (18.68)

with thez x g € V product defined similarly. Assume that theproduct satisfies
Springer relation 13(]

(x x2) X (xxz) = (z,z,2) x (18.69)

(together with the corresponding formula for— z). Springer proves that the ex-
ceptional simple Jordan algebra [8f x 3] hermitian matrices: with octonionic
matrix elements(29 130, 305 169 satisfies these assumptions, and that the char-
acteristic equation foB x 3] matrixz yields the relation18.69. Our purpose here
is not to give an account of Freudenthal theory, but to aid¢aéer in relating the
birdtrack notation to Freudenthal-Springer octonionioyfalation. The reader is
referred to the cited literature for the full exposition girdofs.

The nonassociative multiplication rule for elementsan be written in an or-
thonormal basis = z,e%, T = 2%,

(eq,e’) =0°,  a,b=1,2,......,27. (18.70)
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Expandz, z and define [5(]
e x e’ = e, . (18.71)

Expressed in this basis1&.69 is the Springer relation1@.69, with o = 5/2.
Freudenthal and Springer prove thaB(69 is satisfied ifd**° is related to the
Jordan product

e® . eb _ Jabcec
by
dbe = dabe — %[6‘” tr(e®) 4 0% tr(e®) + 6" tr(e®)] + % tr(e®) tr(e”) tr(e®).

The definingn = 27 representation of’s is the group of isomorphisms that leave
(Z,y) = obay, and (z,y,2) = d*z.yp2. invariant. The “derivation”4.29
V2®V =V ® A — Vis given by Freudenthal, equation (1.21) in réf2{]:

Dz=[z,g]z=2 x (x x 2) — %(gj,z)x— %(g,@z.
Expressed in the basi$g.70, this is the adjoint projection operatBp (tablel8.2),
(D2)g = =329 (Pa)?§ 2 . (18.72)
The invariance of the-product is given by Freudenthal as
(Dz,x x x) = 0.

Expressed in the basi$g.7( this is the invariance conditio® (53 for d ..
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Chapter Nineteen

F, family of invariance groups

Inthis chapter we classify and construct all invarianceiggovhose primitive invari-
ant tensors are a symmetric bilinegy, and a symmetric trilineat,;., satisfying
the relation 19.16.

Take as primitives a symmetric quadratic invaridp and a symmetric cubic
invariantd,,.. As explained in chaptdr2, we can usé,,; to lower all indices. In the
birdtrack notation, we drop the open circles denoting symim2-index invariant
tensord®®, and we drop arrows on all lines:

A" =dy, = ,

[~}
dabc:dbac = dacb = * = i (191)
b C

The definingn-dimensional rep is by assumption irreducible, so

dabcdbcd:_o_ = — Oé(sad (192)
dabb :—O = 0. (19.3)

Were (9.3 nonvanishing, we could use<0) (C— to project outa 1-dimensional
subspace, violating the assumption that the defining repeiducible. The value of
« depends on the normalization convention (Schaigf| takesa = 7/3).

19.1 TWO-INDEX TENSORS

dape is @ clebsch fol” @ V' — V, so without any calculation thE ® V' space is
decomposed into four subspaces:

_ -1 D>
HIC-2>—<-:D (¢}

1=P5+P, + Py +Pj. (19.4)

We turn next to the decompositions induced by the invariaattin

1
Qab,cd = =~ | : (19.5)
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| shall assume tha® does not decompose the symmetric subspiaee that its
symmetrized projection can be expressed as

- TE ) C s

Together with the list of primitives1©.1), this assumptionlefineghe F; family.
This corresponds to the assumptiaé ( in the construction of7=. | have not been
able to construct thé), family without this assumption.

Invariance groups with primitiveg,,, d.;. that do not satisfy19.6 do exist.
The familiar example {3, 41] is the adjoint rep o5U (n), n > 4, whered,,.. is the
Gell-Mann symmetric tensoB(87).

Let us first dispose of the possibility that the invarianedsgors in 9.6 satisfy
additional relationships. Symmetrizingq.6) in all legs, we obtain

1:‘@]:(3“7)%. (19.7)

Neither of the tensors can vanish, as contractions $istlvould lead to

o= = amo 0:[% Sas0. (99

If the coefficients were to vanisth,— A = B + C = 0, we would have

W IC><-J0DC o

Antisymmetrizing the top two legs, we find that

1
@ﬁ ey as.10

In this case the invariant matri® of (19.5 can be eliminated,

I:>_<+nil{x_) C} (19.11)

and does not split the antisymmetric part ©9(4. In that case the adjoint rep of
SO(n) would also be the adjoint rep for the invariance grouggf. However, the
invariance condition

0= (19.12)

cannot in this case be satisfied for any positive dimension

O&:O E%@:n—klo. (19.13)
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Hence the coefficients irlf.7) are nonvanishing, and there are no additional rela-
tions beyond19.6. The coefficients are fixed by tracing widhy:

1 2
E@J = — . (19.14)

Expanding the symmetrization operator, we can write tHetian as

éﬂ+%>_<:n—2&-2j:[+ni23 C’ (19.15)

or, more symmetrically, as
>_<+I+\Y/_n2f2 {) C+X+><} :

2
dabedecd + dadedebc + dacedebd = %(6111760(1 + 5ad6bc + 6acébd) . (1916)

In sectionl 9.3 we shall show that this relation can be interpreted as taecheristic
equation for [3< 3] octonionic matrices. This is theefining relationfor the F}
family, equivalent to the assumptiohd.6).

The eigenvalue of the invariant matiixon then-dimensional subspace can now
be computed from1(9.15:

T D—ra—-
2 n+2
1n—2
_}__ 2n+2 (19.17)

Let us now turn to the action of the invariant matfix on the antisymmetric
subspace in1(9.4). We evaluat&)? with the help of (9.16 and the identity§.60),

replacing the topl,pedecq pair by

n+2{m+aI}

1n—6 2
AlQQ-——Q - 1. 19.18
0= (Q 2n+2Q n+2 > ( )

The roots areg = —1/2, Ag = 4/(n + 2), and the associated projectors yield the

adjoint rep and the antisymmetric rep
8 n + 2
P@_n+10{ I + I | } (19.19)

7:j120 {I__:II} (19:20

Py isthe projection operator for the adjointrep, as it sassfie invariance condition
(19.12. The dimensions of the two representations are
3n(n —2) n(n+ 1)(n + 2)

N =trPg= dq =trP 19.21
tRT T 10 0 8 ™ 20+ 10) (19.21)

and the Dynkin index of the defining representation is
p= 10 (19.22)

on — 22
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19.2 DEFINING ® ADJOINT TENSORS
TheV ® A space always contains the defining rep:
o n n
- m>‘—< + { TN } -
1= Pg + Pr. (19.23)
We can usel,;,. and(T;).» to project aV @ V' subspace frony ® A:

I Cc
Ria,bc = | . (1924)
a b

By the invariance condition1©.19, R projects the symmetrized ® V' subspace

ontoV
jj]: - _% [ (19.25)

Hence R maps théP; subspace only onto the antisymmetrizée V':
P;:R=RA

P7I::[:I: (19.26)

The V@V space was decomposed in the preceding section. Using g and

(19.20, we have
T << a2

TheP; space can now be decomposed as
P;=Ps+ Py +Pyg

_%H:éﬂ+d®_ﬁ>_i<+pm.(1g.zs)

RSy eaey
>-§-<_j:|:]:—}<, (19.29)

and the normalization factors are the usual normalizat{br& for 3-vertices. An
interesting thing happens in evaluating the normalizatothe Py subspace: sub-

Here,

stituting (19.19 into é% we obtain
1 1 26 —n
N@‘@ " 4(n+10)’

1  6(n-2)
%@‘ (n+2)(n+10) " (19.30)
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The normalization factor is a sum of squares of real numbers:

—= a2 > [(T)uedaca(Ty)]” = 0. (19.31)

,5,a
Hence, eithen = 26 orn < 26. We must distinguish between the two cases: as the
corresponding clebsches are identically zero,

n_26:—<X_0, (19.32)

andP; subspace in1(9.28 does not contain the adjoint red,q.29 is replaced by

— dg 5
n—26: —ﬁ>4—<:@>-<—<+P10. (19.33)

Another invariant matrix o' @ A space can be formed from tw®; )., generators:

Q= K (19.34)

We computeP,,Q? by substituting the adjoint projection operator H9(19,
using the characteristic equatial®(15 and the invariance conditioi9.12, and
dropping the contributions to the subspaces already redioom P:

n+2
ol mcte Q%

+
=P 1— ( ) _
N ¥10 { 4o < Q) }
4 n+2 C} 6
_Plon—i—lO{l_Q_ da < 2 )
1 1
+_ —
:Plo {31 Q—n+2 @ :<Z>/_
=P 2 3 (vanishing) (19.35)
=Fij0——— n+ 10 vanisnimg . .
HenceQ? satisfies a characteristic equation
B g, nt4 6
0="Pyo (Q +n—|—10Q TL—|—101) (19.36)
with rootsa;; = —1, a2 = 6/(n+10), and the corresponding projection operators
n+ 10 6
P, =P 1- 19.37
Y+ 16 (n+10 Q)’ ( )
1
Pr=P, 1014 Q). (19.38)

n + 16
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To use these expressions, we also need to evaluate the @igesof the invariant
matrix Q on subspaceBg, Ps, andPy :

n Z / N CA 1

We find it somewhat surprising that this eigenvalue doesepedd on the dimension

QP8%M = —@D{

_ N, 3n-2)
T2 T 2m+10)°
n—3_8
Py—— Py. 19.40
QPy=————Po (19.40)

These relations are valid for amy

Now we can evaluate the dimensions of subspRgesP .. We obtain fom < 26
n(n —2)(n —5)(14 —n)

2(n+10)(n+16) ’
3n(n+1)(n—1>5)

n+ 16 '

A small miracle has taken place: only= 26 andn < 14 are allowed. However,
di1o < 0forn < 5 does not exclude the = 2 solution, as in that case the dimension
ofthe adjointrep19.19 isidentically zero, an#f®A decomposition is meaningless.

Forn = 26, P, is defined by {9.33, the adjoint rep does not contribute, and
the dimensions are given by

n=26: d11 = 07 dlg = 1053. (1943)

d11 :tI‘P11 = (1941)

d12:t1‘ P12 = (1942)

If a dimension is zero, the corresponding projection openzinishes identically,
and we have a relation between invariants:

O_PH_P10<%1—Q)_(1—P6—P9) (él—Q).

Substituting the eigenvalues @, we obtain a relation specific th,

+2) /_%4]:':[ (19.44)

Hence, forF, Lie algebraf = 26) the two invariantsR in (19.26 andQ in (19.39,
are not independent.

By now the (very gifted) reader has the hang of it, and can ¢et@fhe calculation
on her own: if so, the author would be grateful to see it. Thed&x adjoint tensors
decomposition proceeds in what, by now, is a routine: onerfintes thatd ® A
always decomposes into at least four reps.§). Then one constructs an invariant
tensor that satisfies a characteristic equation onithel space, and so on. Some of
these calculations are carried out in ref/]} sections 15, 20, and appendix, p. 97.

1
=26: = —
" - 6
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OO0 = [0 + 0 + « +H + K

262 = 324 + 26 + 1 + 273 + 52
Red = KJ + O + H
52-26 = 1053 + 26 + 273
XX = XX + % + X + e + H

522 = 1053 + 1274 + 52 + 1 + 324
(MeOd -+ + 0 +H + 00+ XJ
324-26 = 2652 + 4096 + 26 + 273 + 324 + 1053
H@D: ‘+§+E+H+@+D+XD
273.26 — 4096 + 1274 + 324 + 273 + 52 + 26 + 1053

Table 19.1 Kronecker products for the five lowest-dimersioaps of 4, whered is the
26-dimensional defining rep, antthe 52-dimensional adjoint rep. See Pattra
al. [23€] and ref. [L94] for tabulations of higher-order series.

19.3 JORDAN ALGEBRA AND F(26)

As in section18.11 consider the exceptional simple Jordan algebra of heamiti
[3x 3] matrices with octonionic matrix elements. The nonasgo@ multiplication
rule fortracelessoctonionic matrices can be written, in a basis = z,e,, as

e,ep, = epe, = %I + dape€c , a,b,ce{1,2,...,26}, (19.45)

wheretr(e,) = 0, andI is the [3x 3] unit matrix. Traceless [83] matrices satisfy
the characteristic equation

x3 — % tr(z?) x — % tr(z®)I=0. (19.46)
Substituting 19.45 we obtain (9.14, with normalizationy = 7/3. ltisinteresting
to note that the Jordan identitg(5,
(zy)2? = z(yx?) (19.47)
(which defines Jordan algebra in the way Jacobi identity deflde algebra) is
a trivial consequence 0fi0.19. Freudenthal I3(] and Schaferj05 show that
the group of isomorphisms that leave forms$zy) = dapx.xp andtr(zyz) =

dabeTaypze iNvariant is Fy(26). The “derivation” {.e., Lie algebra generators) is
given by Tits:

Dz = (x2)y —x(zy) [eq. (28) inref. p24]. (19.48)
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Substituting 19.45, we recover then = 26 case of the adjoint rep projection
operator 19.19:

1
(Dz)d = —Tqlp (g(éadébc - 6ac§bd) + (dbcedead - dacedebd)) Zc - (1949)

19.4 DYNKIN LABELS AND YOUNG TABLEAUX FOR Fj

The correspondence between fh®ynkin diagram from tabl&.6, the four Dynkin
labels, irreducible tensor Young tableaux, and the dinoerssof the lowest corre-
sponding reps is

1 2 3 4

d (a1a2a3a4) d

(g, % H D) & (52,1274, 273,26) . (19.50)
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Chapter Twenty

E-; family and its negative-dimensional cousins

Parisi and Sourlag[/ (] have suggested that a Grassmann vector space of dimension
n can be interpreted as an ordinary vector space of dimensioAs we have seenin
chapterl 3, semisimple Lie groups abound with examples in whichan —n sub-
stitution can be interpreted in this way. An early example Ranrose’s binor&p 1,

reps ofSU(2) = Sp(2) constructed as§O(—2), and discussed here in chapier

This is a special case of a general relation betw#@() andSp(—n) established

in chapterl3; if symmetrizations and antisymmetrizations are intenciel, reps

of SO(n) becomeSp(—n) reps. Here we work out in detail a 1977 example of a
negative-dimensions relatiori{], subsequently made even more intriguirig][by
Cremmer and Julia’s discovery of a gloligl symmetry in supergravitysf].

We extend the Minkowski space into Grassmann dimensiongtwyining that
the invariant length and volume that characterize the Liargroup GO(3,1) or
SO(4) — compactness plays no role in this analysis) become a qiadrad a
quartic supersymmetric invariant. The symmetry group ef @rassmann sector
will turn out to be one o50(2), SU(2), SU(2) x SU(2) x SU(2), Sp(6), SU(6),
SO(12), or E7, which also happens to be the list of possible global symesetf
extended supergravities.

As shown in chaptet0, SO(4) is the invariance group of the Kronecker dejta
and the Levi-Civita tensat,,,; hence, we are looking for the invariance group of
the supersymmetric invariants

(@,9) =guwa"y”,
(.%', Y, z, w) = euuopxuyyzawp ) (201)

whereu,v,...=4,3,2,1,—1,—2,..., —n. Our motive for thinking of the Grass-
mann dimensions asn is that we define the dimension as atreé8, » = 4/, and
inaGrassmann (or fermionic) world each trace carries agsign. For the quadratic
invariantg,,,, alone, the invariance group is the orthosympleCli€p(4, n). This
group [L77 is orthogonal in the bosonic dimensions and symplectibéGrass-
mann dimensions, becauseyjf, is symmetric in the/, 1 > 0 indices, it must be
antisymmetric in the, . < 0 indices. In this way the supersymmetry ties in with
the SO(n) ~ Sp(—n) equivalence developed in chapie

Following this line of reasoning, a quartic invariant tensg, . ,, antisymmetric in
ordinary dimensions, is symmetric in the Grassmann dinoassiOur task is then
to determine all groups that admit an antisymmetric quadiavariant, together
with a symmetric quartic invariant. The resulting classificn can be summarized

by
symmetricg,,,, + antisymmetricf,..o, : (20.2)
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(A1 4+ A1)(4),Go(7), Bs(8), D5(10)
antisymmetricf,,,, + symmetricd,,,», :
S0O(2), A1(4), (A1 + A1 + A1)(8), C5(14), A5(20), Ds(32), E7(56)

where the numbers in) are the defining rep dimensions. The second case generates
a row of the Magic Triangle (figurg.1).

From the supergravity point of view, it is intriguing to ndteat the Grassmann
space relatives of ofO(4) world includeE,, SO(12), andSU (6) in the same reps
as those discovered by Cremmer and Julia. Furthermorepéaap thatll seven
possible groups can be realized as global symmetries oktlenextended super-
gravities, if one vector multiplet is added 0 = 1, 2, 3, 4 extended supergravities.

In sections20.1-20.3 we determine the groups that allow a symmetric quadratic
invariant together with an antisymmetric quartic invatiarhe end result of the
analysis is a set of Diophantine conditions, together whi éxplicit projection
operators for irreducible reps. In secti@f.4 the analysis is repeated for an anti-
symmetric quadratic invariant together with a symmetriartja invariant. We find
the same Diophantine conditions, with dimensioreplaced by-n, and the same
projection operators, with symmetrizations and antisymnizegions interchanged.

Parenthetically, you might wonder, how does one figure octh $hings without
birdtracks? | cannot guess, and | suspect one does notslohhpter thds,; family
is derived diagrammatically, following ref/{], but as experts with a more algebraic
mindset used to find birdtracks very foreign, in refd] we hid our tracks behind
the conventional algebraic notation of Okulk&{]. The reader can decide what is
easier to digest, algebraic notation or birdtracks.

20.1 SO(4) FAMILY

According to tablel0.], the flipo from (6.2) together with the index contractidn
from (10.9 decompos& @V of SO(n) into singlet (0.1, traceless symmetric
(10.10, and antisymmetric adjoini.(0.12 subspaced/ @V = Vi & Vo @ V3. Now
demand, in addition to the above sefdf invariant tensors, the existence of a fully
antisymmetric primitivequartic invariant,

fuupéz_fuupé = _fupl/6 = _full6p = m
Frod m . (20.3)

As .5 is of even rank and thus anticyclif,, ,; = — f. 5., we deploy the black
semicircle birdtrack notatior6(57) in order to distinguish the first leg.

The onlyV®V — V®V invariant matrix that can be constructed from the new
invariant and the symmetric bilinear tens@f(? is

5;’, = gusfusu’agayl = ? t (204)

(we find it convenient to distinguish the upper, lower ingdigewhat follows). Due
to its antisymmetry, th€) invariant does not decompose the symmetric subspaces
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(10.10, (10.12:
PiQ=0, P:Q= (1+0)Q 0.

The Q invariant can, however, decompose the antisymmeéfyisubspacel(0.19
into the new adjoint subspackand the remaining antisymmetric subspége

adjoint' Pa= Q + bP3, b= N/ds
D> A ga I
antlsymmetrlc Pr=-— (1-0)P3

>+< :jt: 1—b:l::, (20.5)

whereds = n(n — 1)/2 is the dimension of th€ O(n) adjoint representatioi,is
fixed by N = tr P4, and theN is the dimension of the adjoint representation of
the f,...,s invariance subgroup &fO(n), to be determined.

By theprimitiveness assumptig@.39 no further invariant matrices ® V* exist,
linearly independent of. In particular,Q? is not independent and is reducible to
Q andP3 by the projection operator indempotency,

0=P% - P4 =Q*+ (20— 1)Q+b(b—1)P3

o:m +(2b-1) :jt: (b — 1):]:. (20.6)

Rewriting the indempotency relation as
P2 = (Q+01)Py =Py

yields the eigenvalug 4 = 1 — b of the matrixQ on the adjoint spac4d:

m =(1-5)—. (20.7)

Condition 0.6 also insures that thE — V' matrix

+ Ndy

2 v
(Q )uu - Wé

is proportional to unity. Were this not true, distinct eigaiues of theQ? matrix
would decompose the definingdimensional rep, contradicting the primitiveness
assumption that the defining rep is irreducible.

Now antisymmetrize fully the relatior20.6. TheP3 contribution drops out, and
the antisymmetrize@? is reduced taQ by:

W+ - DAY= 0 (20.8)

Theinvariance conditior{4.39

0= \@ (20.9)
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yields the second constraint on t@e:

I R

The quadratic casimir for the defining rep and the “4-verteg&rtion are computed
by substituting the adjoint projection operai®y,

L = Yy @: b . (20.11)

a 2 a

In this way the invariance conditio2(.9

b
W—kg(n—@m\:o (20.12)

fixes the value ob = 6/(16 — n). The projection operator2(.5

adjoint: Poa= Q+ P; (20.13)
16 —n
. . 10—n
antisymmetric:P;=—-Q + 16 P; (20.14)
—n

decompose the(n — 1)/2-dimensional adjoint spadé; of SO(n) into two sub-

spaces of dimensions

3n(n—1) n(n —1)(10 — n)
16—n ’ 2(16 — n)
This completes the decompositibiwl = V; @ Vs & A® Vs. From the Diophan-

tine conditions 20.19 it follows that the subspacds,, V7 have positive integer

dimension only fom = 4,6, 7, 8, 10. However, the reduction of ® V undertaken
next eliminates the = 6 possibility.

N=trPy = d7 =tr Py = (20.15)

20.2 DEFINING ©® ADJOINT TENSORS

The reduction of th& @V space, induced by the symmetyjg, and antisymmetric
fuvep invariants, has led to very restrictive Diophantine caindis (20.19. Further
Diophantine conditions follow from the reduction of higipeoduct spaces V7. We
turnto the reduction of (adjoint) (defining)=A®V Kronecker product, proceeding
as in section9.11,10.2 18.5 and19.2

The three simplestt ® V' — A ® V invariant matrices one can write down are
the identity matrix, and

R = g2 , Q= gz :K. (20.16)

R projects onto the defining spacd,® V. — V — A ® V. Its characteristic
equation
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and the associated projection operatGrg®

n n
Py — NH Py — — , (20.17)

decomposel ® V = Vi @ Vg, with dimensions
dg =n, dg =tr Pg = n(N — 1) . (2018)
The characteristic equation for

is computed by inserting the adjoint rep projection oparél6.13 and using the
invariance conditionZ0.9 and theQ eigenvalueZ0.7). The result (projected onto
theVy subspace) is a surprisingly simple quadratic equation,

0=(Q*—(1/2+b)Q+b/2)Py = (Q—1/2) (Q+b)Py, (20.19)
with roots
Ao =—-b, A1 =1/2. (20.20)
Then(N — 1)-dimensional spack, is now decomposed into
Py=Pyo + Py

LGN EAR e

(the prefactors are the 3-vertex normahzatlcﬂnﬁ)(), W|th the associated projection

operators .49
2(16 — n 1
Pio= (7_71) <—Q + 51) Py,

28

2(16 — n) 6
Pi=— 1)Py. 20.22
n=—e <Q+16—n) 9 ( )

This completes the decompositibh® V4 = Vs @ Vig @ Vi1. To compute the

dimensions ol/1y, V11 subspaces, evaluate
trPoQ = —2n(2+n)/(16 —n), (20.23)
to, finally, obtain
dio=trPyo — 3n(n+2)(n—4) ’
28—n
32n(n—1)(n+2)
di1=trP;; = ) 20.24
1=tk (16 —n)(28 —n) ( )
The denominators differ from those i2Q.159; of the solutions t040.19, d =
4,7,8,10 are also solutions to the new Diophantine conditions. Allisons are

summarized in tablg0.1

20.3 LIE ALGEBRA IDENTIFICATION

As we have shown, symmetrig,, together with antisymmetri¢,,,.,, invariants
cannot be realized in dimensions other tian 4, 7, 8, 10. But can they be realized
at all? To verify that, one can turn to the tables of Lie algsbof ref. P74 and
identify these four solutions.



GroupTheory  version 9.0.1, April 8, 2011

E- FAMILY AND ITS NEGATIVE-DIMENSIONAL COUSINS 229
Rep Dimension A+ Ay Go Bs Ds
V=defining n 4 7 8 10
A=adjoint N = 2=l 3 14 21 45
Vz=antisym. % 3 7 7 0
Vs=symmetric [pt2)(n-1) 9 27 35 54
Vio Sn(nt2)(n—1) 0 27 48 120
Vir $n(n1)(nt2) 8 64 112 320

(16—n)(28—n)

Table 20.1 Rep dimensions for ti%&(4) family of invariance groups.

20.3.150(4) or A; + A, algebra

The first solutiond = 4, is not a surprise; it waSO(4), Minkowski or euclidean
version, that motivated the whole project. The quatrtic iiara is the Levi-Civita
tensore ... Even so, the projectors constructed are interesting ngaki

QLo = 9" 9" ecory (20.25)
one can immediately calculat(.9):
Q% =4P;. (20.26)
The projectorsZ0.149 become
1 1 1 1
Pa==-P3+- P;=-P3— - 20.27
a=5Ps+7Q, Pr=-P;—-Q, ( )

and the dimensions af¥ = d; = 3. Also bothP 4 andP; satisfy the invariance
condition, the adjoint rep splits into two invariant subsgs In this way, one shows
that the Lie algebra ob6O(4) is the semisimpleSU (2) + SU(2) = Ay + A;.
Furthermore, the projection operators are preciselytfiesymbols used by 't Hooft
[164] to map the self-dual and self-antidudlD(4) antisymmetric tensors onto
SU(2) gauge group:

1 1
16 o 16 16 5
(PA)i/p = Z (égéu - gl Guvp + et up) = _Z naﬁ 77ap )

b 1 4 4 1 = U=
(Po)p =1 (5500 = 900 = °0p) = = Tl T - (20.28)
The only difference is that instead of using an index fait Hooft indexes the
adjoint spaces by = 1, 2, 3. All identities, listed in the appendix of refl$4], now
follow from the relations of sectioR0. 1

20.3.2 Defining rep ofG,

The 7-dimensional rep df is a subgroup o§0(7), so it has invariants;; and
€wsopas- IN addition, it has an antisymmetric cubic invariad3[ 73] f..,, the in-
variantthat we had identified in sectidfi.5as the multiplication table for octonions.
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Rep Dynkin index A+ Ay &> B3 Ds

— 1o 16—n 1 1 1 1
V=defining 1nT2) 5 1 s H
A=adjoint 1 1 1 1 1
Vz=antisym. foonild) 0 1 1 0
Vs=symmetric 1(16 —n) 3 g 2 3
Vo B - A

8(2n+7) 46

Vi (28—n) 5 8 5 12

Table 20.2 Dynkin indices for th€O(4) family of invariance groups.

The quartic invariant we have inadvertently rediscovesed i

fuupa = Euupaaﬂvfaﬁ’y . (2029)

Furthermore, fot75 we have the identityl(6.19 by which any chain of contractions
of more than twof, s, can be reduced. Projection operators of sec#iori and
section20.2yield theG2 Clebsch-Gordan serie$.12):

TRT=1027T01407, TR14=7T027T0064.

20.3.3.50(7) eight-dimensional rep

We have not attempted to identify the quartic invariant is tase. However, all the
rep dimensions (tabl20.1), as well as their Dynkin indices (tabk).2, matchBs
reps listed in tables of Patera and Sankafi/].

20.3.450(10) ten-dimensional rep

This is a trivial solutionP 4, = P35 andP; = 0, so that there is no decomposition.
The quartic invariant is

f,ulfa’p = 5,uua'pa5'y§wfca[5,'y&w§ = 07 (2030)

whereC,3,+5,¢ are theSO(10) Lie algebra structure constants.

This completes our discussion of the “bosonic” symmegyig, antisymmetric
eapys iNvariant tensors. We turn next to the “fermionic” caseisymimetricg,,,,,
symmetriceq g s-

20.4 E; FAMILY

We have established in chapté? that the invariance group of antisymmetric
quadratic invarianf,,, is Sp(n), n even. We now add to the set§p(n) invariants
(12.8 afully symmetricd-index tensor,

Auvps = dvpps = dppvs = dpvsp - (20.31)
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All of the algebra of invariants and Kronecker product deposition that follow is
the same asin secti@®.1, and is left as an exercise for the reader. All the dimensions
and Dynkin indices are the same, with— —n replacement in all expressions:

6 10 +n
Py= —P P;=- —P 20.32
4= Q+ e Ps, 7 Q+ 5 nFs ( )
3n(n+1) 360
N=——""2=3n-45 20.33
6rn o TS I (2033)
p _ n(n+1)(n+10)
T 2(16+n)

There are seventeen solutions to this Diophantine comgltiat only ten will survive
the next one.

20.4.1 Defining® adjoint tensors

Rewriting sectior20.2for an antisymmetricf,,,,, symmetricd,...., is absolutely
trivial, as these tensors never make an explicit appearahesonly subtlety is that
for the reductions of Kronecker products of odd numbers éihdey reps (in this
case®V?), additional overall factors of-1 appear. For example, it is clear that
the dimension of the defining subspagein (20.18 does not become negative;
n — —n Substitution propagates only through the expressions for\; and V.
The dimension formulaQ.29 become

_ 3n(n—2)(n+4) des = 32n(n—2)(n+1)
N n+ 28 T T T+ 16)(n + 28)
Out of the seventeen solutions 133, ten also satisfy this Diophantine condition;
d=2,4,8,14,20,32,44, 56,164, 224.d = 44,164, and224 can be eliminated//]

by considering reductions along the columns of the Magiafigle and proving that
the resulting subgroups cannot be realized; consequérglgrtoups that contain
them cannot be realized either. Only the seven solutiotedli; table20.3 have
antisymmetricf,,, and symmetriel,,, ,; invariants in the defining rep.

dyo

(20.34)

20.4.2 Lie algebra identification

Itturns out that one does not have to work very hard to idettii series of solutions
of the preceding sectiorffO(2) is trivial, and there is extensive literature on the
remaining solutions. Mathematicians study them becawsefttm the third row of
the Magic Squarel[3(], and physicists study them becausg(56) — SU(3). x
SU(6) once was one of the favored unified mod€l€9. The rep dimensions and
the Dynkin indices listed in tabl20.3agree with the above literature, as well as
with the Lie algebra tables?[/4]. Here we shall explain only wh¥; is one of the
solutions.

The construction ofs;, closest to the spirit of our endeavor, has been carried out
by Brown [34, 359. He considers an-dimensional complex vector spatewith
the following properties:

1. V possesses a nondegenerate skew-symmetric symplecti@ima:;, y} =
Juwaty”



Rep S0(2) A Ai+A+ A Cs As Ds Er

V=defining 2 4 8 14 20 32 44 56 164 224
A=adjoint 1 3 9 21 35 66 99 133 451 630
Vz=symmetric 2 7 27 84 175 462 891 1463 13079 24570
Vs=antisym. 0 5 27 90 189 495 945 1539 13365 24975
Vio 0 6 48 216 540 1728 3696 6480 69741 134976
Vi 0 2 16 64 70 + 70 352 616 912 4059 5920
Dynkin indices:

V=defining 5 1 5 1 2 2 : 2 10
A=adjoint 1 1 1 1 1 1 1 1 1
Vz=symmetric 14 9 9 10 g 108 8 46 23
Vs=antisym. 5 6 L 9 12 15 18 45 60
Vio L 14 2 g 252 70 90 20 380
Via : 2 4 L4+ 2 9 10 x 14

Table 20.3 Rep dimensions and Dynkin indices for Bxefamily of invariance groups.

Aloayldnoio

TTOZ ‘8 Udy ‘T°0’6 UOISIDA
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2. V possesses a symmetric 4-linear foy(w, y, 2, w) = dvepzty” 27w

3. Ifthe ternary producT(z, y, z) is defined ori” by
{T(z,y,2),w} =q(z,y, z,w), then
{T(x,2,y), T(y,y,y)} = {2, y}a(x, 9,9, )

The third property is nothing but the invariance conditiér8@ for d,,..,; as can be
verified by substituting®, from (20.32. Hence, our quadratic, quartic invariants
fulfill all three properties assumed by Brown. He then prose® prove that the
56-dimensional rep of’; has the above properties and saves us from that labor.
The E; family derived above is a row of the Magic Triangle (figurd). This
is an extension of the Magic Square, an octonionic constmucf exceptional Lie
algebras. The remaining rows are obtainéd] by applying the methods of this
monograph to various kinds of quadratic and cubic invasiawhile the columns
are subgroup chains. In this context, the Diophantine ¢mmd{20.33 is one of
a family of Diophantine conditions discussed in chagterThey all follow from
formulas for the dimension of the adjoint rep of form

1 1 1
N:§(k—6)(l—6)—72+360 (E+7> . (20.35)
(20.33 isrecovered by taking = 24, n = 2 — 16. Further Diophantine conditions,
analogous t040.39), reduce the solutions to, I = 8,9,10,12, 15,18, 24, 35. The
corresponding Lie algebras form the Magic Triangle (figlu®.

20.5 DYNKIN LABELS AND YOUNG TABLEAUX FOR E7

A rep of E; is characterized by seven Dynkin labéls asasasasasar). As in
section18.7, tracing with respect to the invariant tensby, ,; modifies the Young
tableaux forSp(56). We leave details as an exercise for the reader. The comespo
dence between the; Dynkin diagram from tabl&.6, Dynkin labels, irreducible
tensor Young tableaux, and the dimensions of the lowesespanding reps is

7

e

1 2 3 4 56

(B EEBow-

(133, 362880, 365750, 27664, 1539, 56, 912) .

— (a1a2a3a4a5a6a7) — (2036)

The Clebsch-Gordan series for products of the five lowasedsional reps of’;
are given in table0.4
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Os=[0+ H + » + X
562 = 1463 + 1539 + 1 + 133
Xeld=XJ+ O + N
7448 =133-56 = 6480 4+ 56 + 912
(HeO=[TT+ - + O + X
81928 = 1463 - 56 = 24320 + 51072 + 56 + 6480
HeO=H'+ 0 +0+XJ+ =
86184 = 1539 - 56 = 51072 4 27664 + 56 + 6480 + 912
Nol= KX + B + K+ o +
17689 = 1332 = 7371 + 8645 + 133 + 1 + 1539
‘ L
o= [ + H + H + + W+ %

1549184 = 27664 - 56 = 980343 + 365750 + 1539 + 152152 4 40755 4 8645

Table 20.4 The Clebsch-Gordan series for Kronecker praaifthe five lowest-dimensional

reps of ;.
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Chapter Twenty-One

Exceptional magic

The study of invariance algebras as pursued in chap@ef£0might appear a rather
haphazard affair. Given a set of primitives, one derives @fBiophantine equa-
tions, constructs the family of invariance algebras, angesmnto the next set of
primitives. However, a closer scrutiny of the Diophantineditions leads to a sur-
prise: most of these equations are special cases of one arséuine Diophantine
equation, and they magically arrange all exceptional f@sihto a triangular array
| call the Magic Triangle.

21.1 MAGIC TRIANGLE

Our construction of invariance algebras has generatedes s#iDiophantine condi-
tions that we now summarize. The adjoint rep dimensi®8sX)), (18.13, (20.33,
and (L7.13 are

. 360
F, famil N =3n—
4 family 3n 36+n+10
360
Eg famil N=4n—-404+ ——
6 1y n + n+o
360
Er famil N=3n—-454+ ———
! d " + n/2+8
. 360
Egfamily N =10m — 1224+ —. (21.2)
m

There is a striking similarity between the Diophantine dtinds for different fam-
ilies. If we define

Fy family m=n+ 10

Egfamily  m=n+9

E;family m=mn/2+38, (21.2)
we can parametrize all the solutions of the above Diopharmditions with a sin-
gleintegem (seetabl@1.1). The Clebsch-Gordan series fét V' Kronecker prod-

ucts also show a striking similarity. The characteristioatgpns (7.10, (18.29,
(19.36, and @0.19 are one and the same equation:

Q-1 <Q + %1) P,=0. (21.3)

HereP, removes the defining angdV? subspaces, and we have rescaledfhe
operatorQ (17.10 by factor 2. The role of th& operator is only to distinguish
between the two subspaces; we are free to rescale it as we wish
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m |8 9 10 12 15 18 24 30 36
Fy 0O 0 3 8 21 . 52
Eg 0O O 2 8 16 35 3 78
E-10 1 3 9 21 35 66 9 133
Eg |3 8 14 28 52 78 133 190 248

Table 21.1 Alldefining representatiarvalues allowed by the Diophantine conditio@4 (1)
and @1.4). Them = 30 column of nonreductive algebras, not eliminated by the
Diophantine conditions of chaptet§-20, is indicated by smaller script.

In the dimensions of the associated reps, the eigenélueintroduces a new
Diophantine denominaton + 6. For example, fromX7.19, table18.4 (19.42),
and @0.39, the highest-dimensional rep i @ A has dimension (in terms of
parametrizationq1.2):

15120
F, family 3 6)% — 156 6) + 2673 — ——
1 y 3(m+6) (m+6) + pe——"
_ 15120
Eg family 4 6)? — 188 6) + 2928 — ——
6 y 4(m+6) (m+6) + p—
. 15120
E; family 2{&m+6ﬁ—2%0n+®+3%8————}
m + 6

27-360 11-15120
m m+6

These Diophantine conditions eliminate most of the sp@risnlutions of 21.7);
only them = 30, 60, 90, and 120 spurious solutions survive butare in tummehted

by further conditions. For thé&s family, the defining rep is the adjoint rep, ®

V =V ®A = A® A, so the Diophantine conditior2{.4) includes bothl /m
and1/(m + 6) terms. Not only can the four Diophantine conditior?d () be
parametrized by a single integer; the list of solutions (tabl@1.1) turns out to be
symmetric under the flip across the diagorfél solutions are the same as those in
them = 15 column, and so on. This suggests that the rows be parantehyzan
integers, in a fashion symmetric to the column parametrizatiombyindeed, the
requirement ofn <» £ symmetry leads to a unique expression that contains the four
Diophantine conditionsX1.]) as special cases:

(C=6)m=0) _, 360 360
00

Eg family  50m? — 1485m + 19350 + (21.4)

N = - 72+

3 14
We takem = 8,9,10,12,15,18, 24,30, and 36 as all the solutions allowed in
table21.1 By symmetry/ takes the same values. All the solutions fill up khagic
Triangle (figure21.1). Within each entry, the number in the upper left corne¥is
the dimension of the corresponding Lie algebra, and the runmbthe lower left
corner isn, the dimension of the defining rep. The expressions fimr the top four
rows are guesses. The triangle is called “magic” partly bseave arrived at it by

(21.5)
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5'0"'" 3A
1 0 1
5'0"'" 1 8
: ua)| A,
1 0 3
5'0""' 0 SA 14G
: 2
1 0 1 37t
5'0""' 0 2 9 28
, ZU(J—) 3A1 D4
' 0 1 2 4 8
0 0 3 8A 21C 52F
s A
1 0 2 i G A P
0 [o 2 8A 1% 35A 78E
E 2U()
1 0 1 3 6 2o Ao 15 0|27 6
0 1 3 93 21C 35A 66D 13%
i ua)| A A
' 0 2 471187 1472 20 2|32 056
3 8 14 28 52F 78E 13|3_i 24&
A A G D
3 1 21422845247861337 248 °

Figure 21.1 Magic Triangle.The admissible solutions of Diophantine conditiod$.4) and
(21.5 form a triangular array that includes all of the exceptlon@& group
families derived in chapters6-20. Within each entry the number in the upper
left corner isV, the dimension of the corresponding Lie algebra, and thebeum
in the lower left corner is:, the dimension of the defining rep. The “Magic
Square” is framed by the double line.
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magic, and partly because it contains the Magic Square,adadik the dotted line
in figure21.1

21.2 ABRIEF HISTORY OF EXCEPTIONAL MAGIC

To live outside the law you got to be honest.
—Bob Dylan

Literature on group theory is vast; hard work builds chagaend anybody who
has discovered, for example, that a trace is a useful syrgrimetariant writes a
paper about it. The good thing about it is that there are maoyderful papers
to study. The bad thing about it is that hardly anybody tratles vast literature,
and so | soldiered on with this monograph happy and undistlrparnering three
citations to the Magic Triangle over the two decades. Thebcpmpact Lie groups
is complete for nearly a century (Peter-Weyl theorem), aaudllly anyone thinks
there is a problem there, let alone a solution to it.

In 1996 Deligne changed this by rediscovering in part thestroiction of ex-
ceptional Lie groups described here. In quantum field theorglytic continuation
in space dimension is a given [L61]. In the classical group theory of Frobenius,
Cartan, and Weyl, each group is a discrete object, with its specific structure;
Deligne’s theory of7L,, tensor categories freed the representation theory of these
shackles, and phrased analytic continuation ifdescribed here in chapt8y in a
language comfortable to mathematicians. Deligne was a@stunf Tits; quantum
field theory has flirted with exceptional groups for at lea@tygars, and so from
both directions one had to explore how continuatiomifits into the theory of
exceptional groups.

Deligneisamuch admired prodigy (he joined IHES at age 18) tlae exceptional
droughtwas followed by new contributions that this monpénaakes no attemptto
incorporate. | apologize to colleagues whose importanesihave either overseen
or misunderstood. Where this monograph fits into the largeure is explained in
chapterl. A brief history of birdtracks is given in sectigh9.

There are many strands woven into the tapestry of “excegtimagic” to which
this monograph is a small contribution. First noted by Résle{29d, the Magic
Square was rediscovered by Freudenthal, and made rigoyobsedenthal and
Tits [129, 130, 324.

The construction of the exceptional Lie algebras familycdiéed here was ini-
tiated [73, 74] in 1975-77. The “Magic Triangle” and the methods used toveer
were published in the 1981 articléd] using the E; family (chapter20) and its
SO(4)-family of “negative dimensional” cousins as an examplee @krivation of
the Eg family presented in chapté7, based on the assumption of no quartic prim-
itive invariant (see figuré6.1), was inspired by S. Okubo’s observaticivf] that
the quartic Dynkin index4.33 vanishes for the exceptional Lie algebras. In the
intervening years several authors have independentiyregbsimilar conclusions.

In 1986 K. Meyberg 240, 241] also showed that the absence of a primitive
quartic casimir leads to uniform decomposition of adjoipmr8 A and obtained the
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Ey family of chapterl?.

E. Angelopoulosis credited for obtaining (in an unpublishaper written around
1987) the Cartan classification using only methods of tecesloulus, by proving that
the quadratic casimir has only two eigenvalues on the synmrstbspace Syfm
(the 1981 result{g] described here in sectioh7.]). Inspired by Angelopoulos
and ref. /3, in his thesis M. El Houari applied a combination of tenaband
diagrammatic methods to the problem of classification ofpéénhie algebras and
superalgebrag[.1]. As Algebras, Groups, and Geometrjesirnal does not practice
proofreading (all references are of form [?,?,?]), preiigalectual antecedents to
this work are not easily traced. In a subsequent public&ioAngelopoulos]?]
used the spectrum of the casimir operator actinglonA to classify Lie algebras,
and,inter alia, also obtained thé&s family of chapterl7 within the same class of
Lie algebras.

In a Shimane University 1989 publication, N. Kamiya/[] constructs theFy,
Eg, E7, and Eg subset of thes family from “balanced Freudenthal-Kantor triple
systems” of dimensionsr = 14,20, 32, 56. In particular, on p. 44 he states an
algebra dimension formula equivalent /(13 under substitutiom g = 2(m —

8).
In a 1995 paper P. Deligne .79 attributed to P. Vogel 339 the observation
that for the five exceptional groups the antisymmettie. A and the symmetric
Syn? A adjoint rep tensor product decompositidh, + PH andP, + P + Pgq
in table17.2 can be decomposed into irreducible reps in a “uniform way that
their dimensions and casimirs are rational functions ofiha&l Coxeter number,
related to the parameter of (17.19 by

a=1/(m-6). (21.6)

Herea is a = ®(a, &), wherea is the largest root of the rep, addthe canonical
bilinear form for the Lie algebra, in the notation of Bourbpkd]. Deligne conjec-
tured the existence of a tensor category that modelgltheodule structure oRA.
A consequence of the conjecture would be decomposition emelrgsion formulas
for the irreducible modules imA*, Vk.

This consequence was checked on computer by Deligne, Cahéde Man§2,
9] for all reps up torA®. They note thatthiraculouslyfor all these rational func-
tions both numerator and denominator factorijfu] as a product of linear fac-
tors.” For representations computed so far, this is an imatedonsequence of the
methods used here to decompose symmetric subspaces (chjpfeor 46 the
conjecture is open.

Cohen and de Man have also observed thatshould be added to the list, in
agreement with our definition of thEg family, consisting ofd;, As, G2, Dy, Fy,
Eg, E7, and Es. Their computations go way beyond the results of chaptesll
of which were obtained by paper and pencil birdtrack comjmria performed on
trains while commuting between Gothenburg and Copenhdgezil, Cohen and
de Man give formulas for 25 reps, seven of which are compuéeel.h

In the context of chaptet7, the dual Coxeter numbeR{.6 is the symmetric
space eigenvalue of the invariant ten€pdefined in (7.12. The role of the tensor
Q is to split the traceless symmetric subspace, and its dwaak is arbitrary. In
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chapterl7 scale was fixed inl(7.4) by setting the value of the adjoint rep quadratic
casimirtoC'4 = 1. Deligne B9 and Cohen and de Manf] fix the scale by setting
Ao+ Am = 1, so their dimension formulas are stated in terms of a parenmmalated

to the \ used here by\cqns = 6. They refer to the interchange of the roots
A ¢ Ag as “involution.” Typical “translation dictionary” entrie my (17.39 is
their A, (17.39 is theirYy", (17.40 is theirC*, etc.

After a prelude on “tensor categories” that puts ruminatiofthis monograph
into perspective, and @L(n) warm-up in whichV ® V@V irreducible reps pro-
jection operators and dimensions (here ta®lé of section9.11) are computed
via a birdtrack-evaluated algebra of invariants multiglion table 8.42) (see sec-
tion 9.11.7), in the 1999 papeid3] A. M. Cohen and R. de Man perform birdtrack
computations of sectioh7.1, and arrive at the same projection operators and dimen-
sion formulas. While they diagonalize the fulk5 algebra of invariants multipli-
cation table, in this monograph the reduction proceeds nst&ps, first t&6O(n)
irreducible reps, which in turn are decomposed iligdamily irreducible reps. This
facilitates by-hand computations, but the primitivenessdition (L7.10 is more
elegantly stated by Cohen and de Man prior to reductiong @6r9. They also
fail to find an algorithm for reducing’s family vacuum bubbles whose loops are of
length 6 or longer, and speculate that expansion in termgefdiagrams will not
suffice, and a new symmetric 6-index primitive invariantl\uéve to be included
in the decomposition afA°®. However, on the way to decomposing thé? space
(section17.2 | do eliminate the 6-loop diagrame., replace

3

by shorter loops (double line refersiig from (17.19 — details are a bit tedious for
this overview). This should imply a 6-loop reduction form@nalogous tol(7.9,
that | have not tried to extract. In the same spirit, accaydintable7.1 of orders of
independent casimirs(, 289 134, 54, 299 (the Betti numbers) for thé&’s family
the next nonvanishing Dynkin index (beyond the quadratie)@orresponds to a
loop of length 8.

Cohen and de Man acknowledge in passing that diagrammattiom “is well
known to physicistsdf. Cvitanovi¢ B3]),” though | have to admit that the converse
is less so: the invariant tensors basis of sectichlis “the ring End:(X), a free
Z[t]-module,” birdtracks morph to “morphisms,” and so on. Todapne has leisure
for reading source papers in foreign tongues, so Cohen abdeverify the Fg
family projection operators and dimension formulas of ¢bap7 by the birdtrack
computations identical to those already given in ref]]

Inspired by conjectures of Deligne, J. M. Landsberg and Lnivi [203 204,
205 206 21Q utilize projective geometry and the triality model of Abn P] to in-
terpret the Magic Square, recover the known dimension acoidposition formulas
of Deligne and Vogel, and derive an infinity of higher-dimiensl rep formulas, all
proved without recourse to computers. They arrive at sontieeoformulas derived
here, including 209 the m = 30 column of nonreductive algebras in takilé.1
They deduce the formul2(.95 conjectured above from Vogel'S$4 “universal
Lie algebra” dimension formula (proposition 3.2 of reiDf]), and interpretn, ¢
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asm = 3(a+4),¢ = 3(b+4), wherea,b = 0,1, 2,4, 6,8 are the dimensions of
the algebras used in their construction (in cas® b # 6 these are composition
algebras). Fom > 12 this agrees with the Magic Square.

In 2002 Deligne and GrosS§ ] defined the Lie groups.€., specified the isogeny
class) whose Lie algebras were previously known to fit int® Megic Triangle
of figure 21.1 B. H. Gross credits his student K. E. Rumelhar®}, 91] with
introducing the Magic Triangle in the 1996 Ph.D. thesis0Ais2002, an intriguing
link between they-state Potts models and tlig family was discovered by Dorey
et al. [96]. For a related recent study df; and E; families, see MacKay and
Taylor [229.

So much for group theory from my myopic, birdtracks perspecire there any
physical applications of exceptional magic?

21.3 EXTENDED SUPERGRAVITIES AND THE MAGIC TRIANGLE

In chapter201 showed that the extension of Minkowski space into negatiseen-
sions yields thez; family. Thesen — —n relations and the Magic Triangle arose
as by-products of an investigation of group-theoreticctrite of gauge theories
undertaken in ref.{3], written up in more detail in the 1977 Oxford preprifit].

| obtained an exhaustive classification, but are there aaizegions of it? Surpris-
ingly, every entry in our classification appears to be realias a global symmetry
of an extended supergravity.

In 1979 Cremmer and Juli&§] discovered that inV = 8 (or N = 7) super-
gravity’s 28 vectors, together with their 28 duals, form and@éltiplet of a global
E; symmetry. This is a global symmetry analogoussto(2) duality rotations of
the double(F),,, F'x,,) in j#* = 0 sourceless electrodynamics. The appearance of
E» was quite unexpected; it was the first time an exceptionabtieip emerged
as a physical symmetry, without having been inserted int@dahby hand. While
the classification | have obtained here does not explain wisyhttappens, it sug-
gests that there is a deep connection between the extendedysavities and the
exceptional Lie algebras. Cremmer and Julig’'s= 7, 6, 5 global symmetry groups
E;,S0(12), SU(6) are included in the present classification. Furthermoretove
plus their duals form multiplets of dimension 56, 32, 20 s&ytbelong to the defin-
ing reps in our classification. While fo¥ < 4 extended supergravities, the numbers
of vectors do not match the dimensions of the defining repd,awe has pointed
out that with one additional vector multiplét = 1,2, ..., 7 extended supergravi-
ties exhaust the present classification. These obsersagi@nsummarized in table
5 of ref. [79].

In 1980 B. Julia introduced a different Magic Triangie’f, 175 176, 16( un-
related to the one described here. His work was stimulatedd 1879 Gibbons and
Hawking remark on gravitational instantons and Ehlers sgtnynand the vague
but provocative remarks of Morel and Thierry-Mieg. The twiangles differ; Ju-
lia’s “disintegration (i.e. oxidation) foF’,, cosets” triangle is based on real forms
that match up only with the [83] subsquare of the Rosenfeld-Freudenthal Magic
Square. | still do not know whether there is any relation leemextended super-
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gravities and the construction presented here.

EPILOGUE

Quantum Field Theory relies heavily on the theory of Lie greuand so | went
step-by-step through the proof of the Cartan-Killing cifisation. Frankly, | did
not like it. The proofs were beautiful, but Cartan-Weyl aégipLie algebra matrices
were inconvenientand unintuitive for Feynmann diagrampuotations. There must
be more to symmetries observed in nature than a set of Didipleaconditions on
Cartan lattices. So | junked the whole thing, and restantethé 19th century,
looking for conditions on Lie groups that would preserveainant quantities other
than length and volume. Imagine the pleasure of rediscogexli exceptional Lie
algebras, arranged in a single family, in the very first stethe construction, as
invariance groups that preserve an antisymmetric cubgriamt (figurel6.1)!

Monotheistic cults seek a single answer to all questiortsti@a religious temper-
amentFs is the great temptress. My own excursion into invariancgebe length
and volume yielded no physical insights. Nature is too ricfotlow a single tune;
why should it care that all we know today is a bit of differaheometry? It presents
us with so many questions more fundamental and pressingithatherFs is the
mother or the graveyard of theories, so my journey into etigepl magic stops
here.

Almost anybody whose research requires sustained use op ¢gheory (and it
is hard to think of a physical or mathematical problem thawkslly devoid of
symmetry) writes a book about it. They, in their amazingetyrof tastes, flavors,
and ethnicities fill stacks in science libraries. My excuseyket another text is that
this book is like no other group-theory textbook. It's weittin birdtracks. It's self-
contained. Every calculation in the book is a pencil-andegr&xercise, with a rare
resort to a pocket calculator. And, of course, it too is usfied: it is up to you, dear
reader, to complete it. | fedrs will not yield to pencil and paper.
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Appendix A

Recursive decomposition

This appendix deals with the practicalities of computingj@ction operator eigen-
values, and is best skipped unless you need to carry out stedowation.

Let P stand for a projection onto a subspace or the entire spaaehfoh case
P = 1). Assume that the subspace has already been reducechiimreducible
subspaces and a remainder

P=> P, +P,. (A.1)
y=1

Now adjoin a new invariant matri) to the set of invariants. By assumption,
Q does not reduce further the = 1,2,...,m subspaceg,e., has eigenvalues
A1, A2y, A

QP, =X\,P, (nosum) (A.2)

on theyth subspace. We construct an invariant, mafrixestricted to the remaining
(as yet not decomposed) subspace by

Q:=P,QP,=PQP - > \,P,. (A.3)
~y=1

As P, projects onto a finite-dimensional subspagesatisfies aninimalcharacter-
istic equation of orden > 2:

n m—+n
Y aQh = [ Q- P,)=0, (A.4)
k=0 a=m-+1
with the corresponding projection operata3s4@:
H/\ /\BP a={m+1,....m+n}. (A.5)

“Minimal” in the above means that we drop repeated roots,llseigenvalues are
distinct. Q is an awkward object in computations, so we reexpress thegtion
operator, in terms of), as follows.

Define first the polynomial, obtained by deleting (I@— A1) factor from A.4)

Hx—/\ﬁ Zbkx a,f=m+1,...m+n, (A.6)
Ba
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where the expansion coefficieb)t = b,(f) depends on the choice of the subspace
. Substituting?, = P — >, P,, and using the orthogonality &.,, we obtain
an alternative formula for the projection operators

P, Zb)\kzbk{ )’“—EAZPW}P, (A7)

@ k=0

and dimensions

n—1

dy = tr P, Zbl/\kZbk{trPQ Z)\k} (A.8)

@ k=0
The utility of this formula lies in the fact that once the petymial (A.6) is given, the
only new data it requires are the trace&PQ)”, and those are simpler to evaluate
thantr QF.
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Appendix B

Properties of Young projections

H. Elvang and P. Cvitanovic

In this appendix we prove the properties of the Young prajeatperators, stated
in section9.4.

B.1 UNIQUENESS OF YOUNG PROJECTION OPERATORS

We now show that the Young projection operaly is well defined by proving
the existence and uniqueness (up to an overall sign) of aamisiving connection
between the symmetrizers and antisymmetrizel3yin

The proof is by induction over the number of coluntris the Young diagrany
— the principle is illustrated in figurB.1 Fort = 1 the Young projection operator
consists of one antisymmetrizer of lengttands symmetrizers of length 1. Clearly
the connection can only be made in one way, up to an overall sig

v HH

Figure B.1 There is a unique (up to an overall sign) connadbetween the symmetrizers
and the antisymmetrizers, so the Young projection opesatar well defined by
the construction procedure explained in the text. The figh@vs the principle
of the proof. The dots on the middle Young diagram mark bolkasdorrespond
to contracted lines.

Assume the result to be valid for Young projection operaters/ed from Young
diagrams witht — 1 columns. Let Y be a Young diagram withcolumns. The
lines from A in Py must connect to different symmetrizers for the connection
to be nonzero. There are exactly; | symmetrizers inR/, so this can be done in
essentially one way; which line goes to which symmetrizamily a matter of an
overall sign, and where a line enters a symmetrizer is ivegiedue t0 §.9).

After having connected A connecting the symmetry operators in the rest of
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Py is the problem of connecting symmetrizers to antisymmetsizn the Young
projection operatoPy-, whereY” is the Young diagram obtained from Y by slicing
off the first column. ThusY’ hask — 1 columns, so by the induction hypothesis, the
rest of the symmetry operatorsiy can be connected in exactly one nonvanishing
way (up to sign).

By construction, the identity is always present in the exgi@m The overall sign
of the Young projection operator is fixed by requiring thabogxpansion of the
symmetry operators, the identity has a positive coefficient

B.2 ORTHOGONALITY

If Y, andY, denote standard tableaux derived from the same Young dieyra
thenPy, Py, = Py, Py, = 6,,P? .» since there is a nontrivial permutation of the
lines connecting the symmetry operator&qfwith those ofY;, and by uniqueness
of the nonzero connection the result is eitﬁﬁr@ (if Y, =Yy) or0(if Yy #Yy).
Next, consider two different Young diagrams Y and Z with thene number of
boxes. Since at least one column must be bigger in (say) Yithamand thep lines
from the corresponding antisymmetrizer must connect fediht symmetrizers, it
is not possible to make a nonzero connection between theyamtietrizers oPy,
to the symmetrizers iRz, , where subscriptg andb denote any standard tableaux
of Y and Z. HencePy Py, = 0, and by a similar argumer®;, Py, = 0.

B.3 NORMALIZATION AND COMPLETENESS

We now derive the formula for the normalization factey such that the Young
projection operators are idempoteﬁ’t%a = Pvy,. By the normalization of the
symmetry operators, Young projection operators corredipgrto fully symmetrical
or antisymmetrical Young tableaux will be idempotent with = 1.

DiagrammaticallyP%a is Py, connected t@®v,, hence it may be viewed as a
set ofouter symmetry operators connected by a seinoler symmetry operators.
Expanding all the inner symmetry operators and using thguamess of the nonzero
connection between the symmetrizers and antisymmetofére Young projection
operators, we find that each term in the expansion is eithea@opy ofPy, . For a
Young diagram withs rows and columns there will be a factor af/|S;|! (1/|A;!)
from the expansion of each inner (anti)symmetrizer, so we fin

Py, =ot, I K
_ oy,
TN ""

Jj=1
s s t p
Hi:l |Si|! Hj:l |Aj|!
where the sum is over permutatiomgrom the expansion of the inner symmetry
operators. Note that by the uniqueness of the connectioveleetthe symmetrizers

=ay,

Ya>
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and antisymmetrizers, the constant is independent of which tableau gives rise
to the projection, and consequently the normalization @onsy depends only on
the Young diagram and not the tableau.

For a givenk, consider the Young projection operatdéts  corresponding to all
thek-box Young tableaux. Since the operatBrs, are orthogonaland in 1-1 corre-
spondence with the Young tableaux, it follows from the déston in sectio®.3.2
that there are no other operatorsidines orthogonal to this set. Hence tRg ,'s
form a complete set, so that

1= ZPYQ . (B.1)
Ya

Expanding the projections the identity appears only onzeyeshave

1
Hf:l |Si|! H;:1 |Aj|! p:

and using this, equatiom(1) states

Py, = ay

— | k! ay /Y| ) 7 B2
p: (gnf_nsmn;_lmju — ©2)

since all permutations different from the identity must@einWhen changing the
sum from a sum over the tableaux to a sum over the Young diagramuse the
fact that thatey depends only on the diagram and that there/age = £!/|Y|
k-standard tableaux for a given diagram. Choosing

oy = Hf:l |Si|! szl |Aj|!
Y] ’
the factor on the right-hand side @.@) is 1 by ©.19.
Since the choice of normalizatioB (3) gives the completeness relatidd.{), it
follows that it also gives idempotent operators: multiptybyPy, on both sides of
(B.1) and using orthogonality, we finB;, = P%b for any Young tableai.

(B.3)

B.4 DIMENSION FORMULA

Here we derive the dimension formula.28 of the U (n) irreps recursively from
the Young projection operators.

LetY be a standard tableau akitthe Young diagram obtained from Y by removal
of the right-most box in the last row. Note thgt is a standard tableau. Next, draw
the Young projection operator correspondingtandY’ and note thaP+ with the
last line traced is proportional By .

Quite generally, this contraction will look like

AV,

(B.4)
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Using 6.10 and ©.19, we have

1
s t == | g1 t +(s—1)s1 t
s
(n—t+1) (s—1)
= 7(% o1 ) + p” s-1 t-1
_(s—l)(t—l) . -
st
_n—t+s
- st s-1 t-1
—1)(t—-1
S

Inserting this into B.4) we see that the first term is proportional to the projection
operatorPy-. The second term vanishes:

Rest of v

The lines entering 'Sfrom the right come from antisymmetrizers in the rest of
the Py-diagram. One of these lines, from, Asay, must pass from*Shrough the
lower loop to A" and from A‘ connect to one of the symmetrizers, sayilsthe
rest of thePy-diagram. But due to the construction of the connection betw
symmetrizers and antisymmetrizers in a Young projecticaraior, there is already
a line connecting Sto A,,. Hence the diagram vanishes.

The dimensionality formula follows by induction on the nuenlf boxes in the
Young diagrams, with the dimension of a single box Young diagbeingn. Let
Y be a Young diagram withy boxes. We assume that the dimensionality formula
is valid for any Young diagram witpp — 1 boxes. WithPy. obtained fromPvy as
above, we have (using the above calculation and writiRgfor the diagrammatic
part of Py):

n—t+s

dim PY =Qy tr DY = 7t0zy tr DY/ (85)
s
Y/
=(n—t+s)ay ||Y|| tr Dy (B.6)
Iy fy
—(n—t LN B.7

This completes the proof of the dimensionality formda2@).
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