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1. INTRODUCTION AND SUMMARY

The 19th century study of invariance groups reached its peak with
Cartan's classification 1 of camplex Lie algebras. He gave an explicit
construction of generators of all possible complex Lie.algebras, but
did not give the invariants associated with each algebra. Most of the
entries in Cartan's list of allowable algebras were immediately
identified as representations of the classical invariance algebras SO(n),
 SU(n) and Sp(n), but of the five exceptional algebras Cartan identified
only G, as the algebra of generators of octonion iscmorphisms. The
fact that the orthogonal, Unitary and symplectic groups were invariance
groups of real; complex and quaternion norms suggested that the
exceptional grou@s were associated with octonions, but it tock more than
another fifty years to establish the comnection. The remaining four
exceptional Lie algebras emerged as rather camplicated constructions from
octonions and Jordan algebras. |

In the present paper we attempf to give a unified construction of
both classical and exceptional Lie algebras as invariance algebras
(without recourse to octonians and Jordan algebras) and find the most
economical way of camputing the values of associated invariants. From
Cartan we take only the classification, as the standard for identifying .
invariance algebras, and occasionally as a hint of the underlying
invariants; The spirit of our approach is close to the aximatic
constructions of Titsz, Springer 3 and Brown ¥ (among others);
instéad of constructing explicit representations of group generators,
we characterize the algebras by representation independent identities

satisfied by the group invariants.



The unifying concept from which we strive to generate all invariance

algebras is the notion of primitive invariants. They are generalizations

-of classical invariants such as length (correspanding to invariant

tensor Géb) or volume (cor'r'ésponding to e c)' By an invariance algebra
we mean the algebra of a meximal set of generators of infinitesimal
transformations which iSreserve a given set of primitive invariants. By
definition, any invariant of this algebra ‘can either be constructed

from the primitives or is itself a primitive. H. Wéyl calls this the
first main theorem of invariant theory: "All j_.nva_r'iants are

expressible in terms of a finite number among them,"' S Enlarging

the set of primitives either restricts the nﬁmber of possible realizations

(§_ is preserved by S0(n) for any n, but § only by S50(3)) or

ab* Fabc
restricts the invariance algebra to a subalgebra (6]‘: is pfeser'ved by
U(n), but Gﬁ’ﬁab by S0(n)). To make the notion of primitiveness an
effective computational tool, we augment it by the primitiveness

assgggtion (2.8): any invariant can be expressed in terms of tree
contractions of primitives. This is possibly the most problematic
step in our approach; we assume not only that every invariant can
be constructed from primitives but also that it can be reduced to
a particular basis set. | |

It is easy to state classical primitive invariants explicitly:

§,.=1, 6,,=0 -1, ..., but we would not make much

11 12 5 U2 trafq3p T
headway if we were to define complicated primitives in this fashion.
A hint of a more elegant formulation is provided by classical algebras;
we note that to define S0{n) it is sufficient to specify that the

primitives are 6;, d with d ab‘sxm_n_e" tric, and similarly Sp(n) is

defined by primitives Gg s b with £ ab antisymmetric. In this spirit




we shall specify each primitive by its symmetries. As our intention
is not to determine all possible invariance algebras but merely to
establish a procedure for constructing the invariance algebra for a

given set of primitives, we shall consider'only three types of primitives:

ab..f

Gi, fully symmetric and fully antisymmetric fab"d. This will

suffice to construct the lowest dimensional representations of An’ Bn,
Cn’ Eh, G2, EG, E7 and Fu, as well as some higher representations of
classical groups.

The crucial difference between our and Cartan's approach is that

we describe the invariance algebra in terms of projectors P (2.17-19),

rather than in terms of generators Ti (2.8). This .saves us the effort
of constructing an auxilliary adjoint representation spaée; the
projector projects out an element of the invariance algébra ffcm an
arbitrary element of U(n) without any referénce tofa'particular T,
basis set. ‘Furthermore, projectors are invariant tensors and by
pnﬁnitiveness assumption expressible in terms of prdﬁdtives (2.23).
The invariance conditions (2.4) then fix the constaﬁts_in thé projector
expansion aﬁd force the primitives to satisfy certain algebraic identities.
Our attempt to carry out this;programme_is'only-partially
successful, and beyond fhé classicél invériancé'groups we dgrive
G, (incidentally proving Huwrwitz's theorem} and partially qharacterize

6

EL, E. and E7,,generating in the process the entire Freudenthal's
magic square (Table I) and a host of algebraic identities. We

sumarize our results by listing the sets of primitives considered

here together with the invariance algebras they generate:



o Fh

o Fh

Ga

§ ,C

ij

b')

abed

£,

ijk

> SU(2) = Sp(2); £ = ¢

abcd

> Uln) -

ab

Sp(n); n even

SUG); £20° = ¢8PC

SU(n); f = lLevi-Civita tensor
S0(n)

Springer's relation;

E6(27) + second row, Table I

no realization

S0(2) 3 fab = €ap

Hurwitz's theorem;

fabc = R, C, Q, O multiplication tensor

1) Jaccbi relation; SO(3)

ii) altermativity relation; 62(7)

- 80(n); f = levi-Civita tensor

.D2(6) = A1(3) & A1(3), 62(7), B3(8).

i) characteristic equation;
Fu(26) + first row, Table I
B1(5)

A2(8)

Ca(lu)

i1i) no characteristic equation; ?
-+ Brown's relation:

E,(56) + third row, Table I

s ? +»E8(248)

guess for N, fourth row, Table I

(5.5)

(6.11)
(6.14)
(7.19)

{5.6)

(9.9)
(10.10)

(10.14)

(9.9)

(18.4)
(13.29)
(13.31)
(9.9)
(14.21)

(15.14)

' (15.20)

(15.38)

(15.49)

(15.862)

(16.9)
(16.19)

(17.2)
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These results are derived in Sections 5-16. To accustom the
reader to the method and the notation we construct the classical
invariance algebras before going on to interesting but unfamiliar
exceptional algebras. The basic concepts and the diagrammatic notation
for invariant tensors are introduced in Sections 2 and 3. The magic
square is constructed in Sec.17, while in the vemainder of the paper
we compare our results with the known octonian and Jordan algebra |
results, and discuss some applications to Yang-Mills theories.

The present paper is a self-contained presentation of results

some of which were préviously stated in Ref. 6 in the context of a

- specific theoretical physics application. Ref. 6 contains an

exhaustive list of general references. For campleteness sake here
we list sane further references which have come to our
attention since the publication of Ref. 6; Refs. 7~17 on exceptional

algebras and 18, 19 on diggrammatic methods.



We conclude this intr'oduc‘tién with few general remarks about the
motivation for the above work, and its relation to the classical
group theory methods.

We are mptivated by quantum field theory, in particular by
Quantum Q’lr\om_odynanﬁ.cs, i.e.'quark theories in which quarks differ
only in cne discrete label (colour), but are otherwise indistinguishable.
In the interesting models the quark colours can be relabelled, but no
colour is preferred (the colour symmetry {s exact). The alge.bfa
of allowable colourations is defined by the colourless combinations

. we wish to allow. In the standard coloured quark model these are
mesons formed from quarks and antiquarks (6“]:5,l invariant) and baryons
formed from three quarks (eabc invariant). As we show in Sec. 7, SU(3)
is the unique invariance algebra for these invariants. Method of the
preserﬁ: paper enables us to find the invariance algebra for any such
model. More generally, whenever we consider an exact symmetry we do
" not need any explicit representation of Cartan's generators Ti’ but

only the colouf averages (all allowable colourations summed over) given
by the projectors P. This leads us to more speculative motivation for
the present work; invariants studied here are crude prototypes of
Feyrman integrais (instead of integrating over a continuum of momenta
and energy states one sums over a finite number of allowable colourations).
In this model of quantun mechanics probabilifies are a class of scalar
invariants with direct combinatoric significance, and the colouring
rules are implemented by projectors. Formulation in terms of projectors
rather than the generators is reminiscent of Jordan's formulation of
quantun mechanics, and study of allowable invariance algebras might

lead to prototypes of quantum mechanics which cannot be formulated in
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. the conventional Hilbert space formalism “°. In this crude model

the adjoint representation is analogous to the photon, and the
arbitrariness in the definition of the adjoint representation space
possibly analogous to the gauge dependence of photons (for example,
the invariance condition (3.15) is analogous to a Ward identity in
field theory). Our hope is that a projector formulation of invariance
algebras might suggest some formulation of QED in terms of gauge
invariant probabilities rather than individually gauge dependent
Feynman amplitu&es.

Regardless of where the above speculations might lead us, the
present approach is already a useful tool for study of invariance
algebras, iﬁ many ways camplementary to the standard Cartan's approach.

It is a method for constructing an invariance group from a given set

of invariants; Cartan's construction makes no reference to primitive

invariants. We have no list of éll possible types of primitives;
Cartan gives an exhaustive listing of all possible invariance algebras.
Present approach is very convenient for computing complicated invariants 5;
these are in principle computable from Cartan's ekplicit canonical
representations, but in préctice this is too difficult for any
representaﬁion beyond a few. low dimensional ones. Cartan-Dynkin and
Freudenthal-Tits formulations are very suitable for the study of
subalgebras (this aspect is emphasized by Ramond 11); present approach
says little about subalgebras. In Cartan-Dynkin scheme all representations
of a Cartan algebra are treated on equal footing; the present approach
is unwieldly for higher representations.

Cémpared_with Freudenthal-Tits construction of the magic

square , presént approach generates various identities and the rows



of the square very quickly, but the commections between the column

entries remain dbécure, and the conditions that exclude columns of

spurious solutions are lacking. We can easily compute a large class

of invariants for exceptional algebras; it is not clear how one is

to use Freudenthal-Tits construction to compute any invariants.

Finally, we have failed to find a set of invariants that generate

the EB row of the square, but invériants of most of thé entries of

this row can be determined,and we hope they might lead us to a so far

UNknown 7 linear realization of Eg. |
Qur results are in many ways preliminary, unpolished; and we

would appreciate critical commenté and references to any relevant literature

we might have missed. There are many unanswered questions, such as;

1) what should be added to primitiveness assumption in order that the
exceptional algebras are uniquely defined?

2)  do there exist simple Lie algebras which do not satisfy the
primitiveness assumption?

3) what is the simplicity criterion in terms of projectors?

4) how does one determine the subalgeﬁras and the branching rules?

5) what is the connection'betweeﬁ éolumn entries in Table I?

6) what are Eg primitives?

7 what is the connection between types of possible primitives, and

normed algebras?
8) can one obtain Cartan’s classification from projectors, rather
'than from generators?
9) given a Cartan-Dynkin representation, can one find the
corresponding primitives?
10) what scalar invariants (beyond representation dimensions) should

be integers?




2. + FPRELIMINARIES

Let the defining space V be an n-dimensional complex vector space

with elements X =(X1,X

1 2
x =\x X 3 **°

gse X ) and V its dual with elements

H
x'n), where Xa = (Xa) . Let a finite number of arrays

of complex numbers of form

«:C

g-gd sy 3y by, vu.y,e=1,2, ,..n (2.1
together with their duals )

T T e..d - .ab..c.®

8 =g Clpa = (8llQ

be invariants (or invariant tensors) of the invariance group G, a group

of infinitesimai linear transformations over V, V

' . '

Xz x +iDh x (2.2)
_ a, b, =1, 2, ...n,

x'a=xa ---:|_D-r]a:)L xb,

where the derivations DZ are infinitesimal complex [ron] matrices. By

invariance of (2.1) we mean that the polynomials of form

ab..c. d e

P(Xy ooy Pyd= 87 0 X Ve o2 P +-- (2.3)

are invariant under (2.2)

Plx +1Dx, ...0) = P(x, ...),
(Such polynomial is scmetimes referred to as a form).

Each such relation imposes an invariance condition on the derivations D:

a fb..c C ab..f

ngd ]? gd e ... + Dg g4 .2 (2.%)
_ nff ab..c  _ _pff _ab..c _

Dygs e e =D gy 0




transformations, i.e.

transformations which preserve a complex norm

_=-__a./b ;
N X))z xx= dbxxa (2.5)
The invariance condition for G]EDL relates D and D+
a I +f a _
Df db - D b Gf =0

so that the derivations we consider are always Hexmitian, D = D+.

Constraints imposed on D by different invariance conditions (2.4)
are not necessarily independent. If D preserves ga.bc’ it automatically

. . . abc def ¢t cbd a _cde
preserves composite invariants g g » 8 ibe B3 Gb g e

Clearly we have to distinguish between a finite number of primitive
invariants, or primitives, each of which gives an independent
constraint (2.4), and the infinite muber of camposite invariants
which impose no further constraints on D. Té clarify the notion of
primitiveness let us introduce some terminology which will be self-

evident in the digrammatic notation: A composite invariant can be .
t  _cbd | |

disconnected (as Gg ‘Sccl) or connected (as g sbe B ). A connected !
composite invariant can be a tree (as gT abo nge g+ e fh) or can contain ’

+ cde + bf . . .
loops (as g abe & g ofp 8 }. let W be some composite invariant

(indices suppressed). Take a finite number of invariant tensors

together with their duals

. a ab abc a
’-P = {Gb: 4 » & H gbca ---}

and compose from the invariants of this set all connected or disconnected

{(m)

tree invariants T with the same free indices as W.

Primitiveness ‘assumption. P is aset of primitives if

i) any invariant tensor can be reduced to a sum over connected or

disconnected trees of contractions of invariant tensors fram the set ?:
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(m) (2.8)

(Cm a complex number) ,

ii) no element of P can be so reduced. | For example, if

P o= {dg, gabc} , condition 1) requires that the loop contraction

abe *t

g g ohd is reducible

abc _t

A A . (2.7)

otherwise the set of primitives must include two rank 2 tensors,

;‘ and gj = gabg .g-rcbd' Parenthetically, let us note that the set

of primitive invariants is not the same thing as the set of irreducible

8

polynomial invariants of af,given Lie algebra. For example, the adjoint
representation of SU(n) (A _4 1in Cartan's notation) has three
primitive invariants ’_P = { Gij R Cijk’ diﬁk}’ but n-1 ﬁldepeﬁdent
homogencus polynomials.

As the notion of primitiveness is the basis of the entire
construction of invariance groups attempted in this paper, it is
important to emphasize that the above definition of primitiveness is may-

be not satisfactory. As it stands, primitiveness assumption falls

short of uniquely defining certain classes of invariance algebras,

among those Fu, E. and E7. I hope that the results of the present

6
paper might suggest a sharper definition of primitiveness.

If we expand the derivation D]; in terms of some basis set of
[nxn] Hermitian matrices, invariance conditions (2.4) become conditions

on the algebra closed by the bases. We shall consider two parametrizations

of D];, one in terms of generators T

b b i real, infinitesimal;

Di=e (Ti)a ) T4 hermitian , (2.8)
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and the other in terms of projectors P

_ ¢ _d S A . os . o,
DI; = €4 pca y d hermrt:.an, mfmrtgsmal,
ac -
(P ) Pbd . (2.9)

Generators. In Cartan's apfmoach one expands D in terms of N
j’.ndependen't hermitian matﬁ.ces Ti (Ti are trivially related to Cartan's
non-hermitian canonical bases B.i) . Ti ciose a lie algebra. This
can be seen by considering an N-dimensional camplex vector space A with
elements X = (X X2, XN) constructed by mapp:.ng

X; = X T.¥3 xe V, ye V. . (2.10)

The transformations of the group G over the space A are generated by

the adjoint (or regular) representation generators (Ci)jk

. _
Xj )(:J + 31 €s (C )jk X (2.1
according to the action of G on the underlying V, V spaces

=y Y _ - . - '
X Tj v -ij y+1eix[Tj,Ti]y _ (2.12)

By comparing (2.11) and (2.12) we see that if (T]._)]‘-:;L is an invariant
tensor, T, must close a Lie algebra

[T, T3] = 4Gy T s Gue=(Cy ,  (2.13)

This is the only invariance condition of type (2.4) ‘used in Cartan's
analysis. At this point Cartan chooses T, of canonical form whose
symmetry properties make it possible to determine all solutions of
(2.13). This classifies all semisimple complex Lie algebras, but it
does not tell us which particular algebra preserves a given set of
primitive invariants.

Before returning to this problem, let us make several cbservations

which will be useful later. The quadratic form 'I!--(TiTj) is symmetric
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and real, so it car be diagonalized., With this redefinition the
.diagonal entries of Tx (TiTj) are non vanishing because of the
independence of T. and positive because T, are hermitian. Hence

it is always possible to choose generators in (2.8) (this amounts to
a rotation and rescaling of parameters Ei) which satisfy a |

normalization condition

T_r (Til_rj). = a Gij (2.14)

where a is an arbitrary positive cons:fant_. (In Cartan's approach a is
customarily fixed by choosing root vectors of some standard length).
With this normalization the structure constants Cij.k are real, fully
antisymmnetric and computable from T, by tracing (2.13) _with Tj:

1 o |
3 Tr [T,T.T - TIT] | (2.15)

1C.., = 5T

13k

Projectors. To clarify the relation between the generators Ti and-
the defining space 'invariénts, consider an arbitrary hermitian matrix

P§ expanded in terms of the bases Ti

N _
- a a. :
I I omIE A | (2.16)
where Z is linearly independent of I..

Pefine a projector P with properties

ce fb _ cb

Pdf Pea = Pda (2.17)
cb a _ c

b ga g, B (2.19)

Faa %

To compute m, in (2.16) use the projector



_(2.20)
and trace with (Tj)g to obtain

m, =
1

pl

Te(T. M)
i

Substituting back-into‘(2.20) we have

cbh

P

1 c b _
- S (TPg (T2 1M =0
As this is true for arbittery Mi, the projector which projects out the
subspace of [nxn] hermitian matrices spanned by bases'Ti can be

constructed from the generators by

Pg]; =-§-L (r.)¢ (1.)P

That this is indeed the projector (2.9) can be seen by rewriting (2.8)

using (2.14)
a _ c 1 d a
Db = Ej (Tj)d 3 (Ti)c (Ti)b
_c da

S = ej(Tj)g can be replaced by an arbitrary infinitesimal hermitian

where £
matrix, because by (2.20) the extra parameters do not generate any
additional transformations.

Equation (2.21) establishes the connection between generator and
projector descriptions of invariance groups, but it does not mean that
in order to know P we must first construct Ti' P is a more fundamental
object in the sense that if offers a more economical description of the
invariance group; unlike Ti construction, construction of P does not
require introduction of an arbitrarily labelled auxilliary space A,
and an arbitrary overall normalization (2.14).

Projector P is itself an invariant tensor, and by primitiveness

assumption (2.6) it must be expressible as a sum over tree contractions

of primitives
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ac _ a.c a,c .
Pog = C Gchb + C2 Gbcsd + (all independent

contractions of other primitives with (2.23)
the right index structure)
Substituting this expansion back into (2.4) we obtain conditions on
Cm and the primitives which often suffice to fully determine P and thé
invariance algebra.

The expansion (2.23) is intimately related to the Clebsch-Gordon
expansion of the Kronecker product V @ V. The projector P projects
out that part of V & V which transforms as the adjoint representation
(2.10)

X, yb z &5]; %xcyc +% (Ti)g Xc(Ti)g yd +oeenn
As this is true for arbitrary x, y the Clebsch-Gordon series can be
written as a campleteness relation for a sum of projection operators,
one for each irreducible representation of V & ¥ (wel reserve the term
"projector" for the pmjectidn operator for the adjoint representation);
5765 = 2 8367 + B+ ... (22w
The first term projects out the singlet, the second the adjoint
representation and so forth, and the number of terms equals the number
of independent tree invariants with the right index structure.
Expansion (2.24) is a special case of a general Vg V ... aVaiz ...

Kronecker product decomposition (indices suppressed)

1- ;’: Py

pZ = p | (2.25)
X _ .
PRS0 ifa s

where A distinguishes different irreducible representations. With

this in mind we can generalize the notion of invariant tensor (2.1)
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to tensors with many different kinds of indices, each kind being a
shorthand notation forsome projection operator in (2.25). For example,

consider (2.1) enlarged to

a..b a,..d

g% c..d, 1.3 1,03

,..N’ . (2'26)

onon
RN
- -

The adjoint representation indices i, ..j are a shorthand for

projectors applied to an underlying defining space invariant:

a e _ ag e
8ea, i (Tif * 8can Tef -

In this sense we shall often use generator Ti as a shorthand for the

projector P:

a e _ ag
02 (0% = a P ng i

(T
without ever attempting an explicit construction of Ti'
Invariant polynomial (2.3) corresponding to (2.26) includes elements -
of the auxiliary space A of (2.i0), and the invariance condition (2.%4)
now includes the adjoint representation derivations (2.11):

Iﬁk = ey (Ci)jk
Lie algebra (2.13) is simply the invariance condition for P(x,V,Z) =

(T&)g xabei, and similarly Jacobi relation is the invariance

condition for Cijk' lie algebra is an automatic consggpencé of

the invariance of P%S.

As the generalized invariants t2.26) are only a shorthand notation

for defining space invariants contracted with some projection operators,

the primifivéness assumption applies to generalized invarianfs as well:

one merely contracts both sides of (2.8) with the same projection operators.
By contracting we can turn expansion (2.6) into a set of linear

equations

W= o M (2.27)
m
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where M - T+(m). T(n), Wb - Tf(m)‘

W are scalar invariants formed

by contracting all pairs of corresponding indices

T+.W - Tf. d..c wa..b

3..1i, b..a “c..d, i..3 (2.28)

(m)

Tree invariants T are generally not independent, and the summation

in (2.6) can be restricted to some basis set T(1), ey T(B)

for
which det (f™) # 0. This enables us to compute Cm in (2.6). 1In this
way study of invariance algebrasredgces;to study of scalar invariants.
By means of projection operators (2.23), (2.25) a generalized scalar
invariant can be written as a sum over scalar invariants composed only
of primitives. The primitiveness assumptionbguarantees fhat every such
scalar invariant is computable. Suppose that the scalar invariant

C is connected and contains ¢ loops of contractions. We can always

separate out a one-loop sub-invariant W

- ..b d..c
C - @.!d Vb. ta

and reduce W by (2.6) to a sum over tree invariants T

By this
process of rewriting each C as a sum of scalar invariants of £-1 or
less loops we can reduce any scalaf invariant to a polynomial in
62 = n, the dimension of the defining space.

To illustrate the importance of scalar invariants, let us
consider few simple examples. One trivial scalar invariant is the

dimension of the defining space, 62 = m. First non-trivial scalar

invariant is the dimension of the invariance algebra, Gii = N. This

positive integer is gg@gﬁted from the projector by

a (pyb o pfb

- = - 1

)

H
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The dimension of any representation in (2.25) can be similarly

computed from the corresponding projection operator. Another

. 22=24.12,13
important scalar invariant is £, the index of the defining representation ¥
Tp (T,T,) '
R (2.30)
- Tr(C.C.}
2]

21 twns out to be an integer for the lowest dimensional representations
of all simple Lie algebras. As will be shown in the next section, &

can be expressed in terms of projectors as

e A -2 e pd (2.31)

By hermiticity of Ti’ 2 is real and positive. For simple Lie algebras
normalized by (2.14), the index is related to the Cartan-Killing metric

_ -1

However, converse is not true; even if the explicit evaluation of
CartarrKilling metric for some invariance algebra yields (2.32),

this is no guarantee that the algebra is simple. I do not know how to

formulate the simplicity criterion in terms of projectors P.

3. DIAGRAMMATIC NOTATICN

Relations like the invariance condition (2.4) can be quite
curberscme, especially if in addition one has to symmetrize various
subsets of indices. The standard way of avoiding a proliferation of

indices and incorporating symmetries is by defining the invariants

(2.3) as abstract products. For example, instead of tensorial

primitive invariants 6§ xayb, 22 = g

¢ xbyc,'one introduces products
(§=X), z = xey and demands invariance of a symmetric trilinear form

K,y ,2> = (Xeyy 2):

Dx,y,2> + <xX,Dy,z> + <x,y,Dz> = 0 (3.1)
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We shall give some examples of this notation later. In the
present context an abstract product notation would entail

too many kinds of dots and brackets., and to treat all invariance
algebras in a unified manner it will be most convenient to stick to
the tensor notation. It should be emphasiied that all the relations

studied here are coordinate independent, and tensorial indices have

only formal meaning, indicating what representations appear in an
invariant, and what sumations are to be performed (see the nice
discussion of tensor invariants given by Penr'osezs). We explcit
this coordinate independence of tensorial equations by introdﬁcjng a
label-free diagrammatic notaticn. In this notation the tensor

invariants of the preceding Section are written as

sp = (3.2)
6ij i 3 (3.3)
(1,)° a_f_b (3.4)
1 Gy d)\h. | (3.5)

{ here ihdices are read counterclockwise, and the

skew symmetry is built in by }\ = - )\ )
a b '

ac _ 1 ' '
Pbd - '5 I . (3.6)
_ d c
Clebsch-Gordon series: . |
1\ 1 x
= + = S SN 3.7
td-24+3 3.7

Dimension of the defining space: n = 0 (3.8)

H

Dimension of the invariance algebra: N O @ (3.9)
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a

As we shall consider only two types of primitives beyond db

, 1t

will be ccnvenient to introduce special diagrammatic notation for them.

Fully symmetric primitives d will be denoted by

d: dabc..f - q bac..f - 4 bea. . f - L.
= 'iiuf| = g i“’l = e (3.10)

abec |

and the fully antisymmetric primitives f by
£ fabc..d = - f bac..a _ £ beca ..d

: " r : -m=.“

abc

(3.11)

Without fear of confusion we can suppress the dagger notation for
their duals:

+

d = _.f,'ff = f

b d..cba
We have used a semicircle in (3.11) because even rank f's are not
cyclic

gibed . _ gboda - (3.12)

The odd rank f's are cyclically symmetric and for them we do not

have to distinguish between the first and the last index:
fabc..d'_ _
= 2 (odd ranks only) (3.13)

abe d
We shall also find it convenient to introduce a special notation for

£ of rank two

L | (3.14) .

-

N .:...‘g-‘s:;é
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Even though in the above definitions we have labelled the lines,
indices can always be amitted. An internal line signifies a sumation
over the corresponding indices, and for the external lines the
equivalent points on the paper represent fhe same index in all terms
of a diagranmtié equation. Consider an arbitrary tensor invariant
of form (2. 26) kil
abe _d £ (3.15)

Ede, ijk e . T

(legs are always indexed counterclockwise)

The invariance condition (2.4) is expressed diagrammatically as

Ny T 4,

(3.16)

L i I
t - + A + - H -

This is the most general form of the invariance condition; the tensor

denoted by the box can be a primitivé, or a complicated composite

~ tensor. For example, Lie algebra (2.13) follows from the invariance

ofJ-

ED ALY RV,
and the Jacobi identity from the invariance of /L\ :

0= :)i\'f")zi _ :;J\\ o | (3.18)
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The normalization (2.14%) is diagrammatically

—— =23 | (3.19)

Note that (3.17) fixes the sign convention for Cijk’ and that if the
arrows were reversed, the right-hand side would change sign. The

diagrammatic version of the definition (2.15) of Cijk is

A=t AA

It is always sufficient to indicate the direction of a line by a
single arrow, and the remaining inessential arrows can be amitted.
Nofe also that the dual tensor g+ in (2.1) is obtained by flipping
over the diagram for g and reversing the arrows on all directed lines.
To illustrate how 6ne computes with diagrammatic equations, we

shall derive (2.31). Use (3.20) and (3.17) to cbtain

< = (-9 _
= b:*m—b)(*’ﬂ o (3.21)

and substitute this into (2.30)
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Noting that -ﬁ-— = a —~-1-,we have (2.31);

gl A Z @» (3.22)
n 2
N a :

Very convenient tcols for the study of Kronecker products and

invariants with symmetries are symmetrization and antisymmetrization

cperators defined recursively by

Y \ v ’e o

" | l - . '
= — + h - ey
r m ” ' u' l (3.24)

H =_%T[”|—X|+K~IX+)K"X:[ (3.25)

The factor in front counts the number of distinct permutations and

insures idempotency

0

(3.26)

These operators generate the symmetric group, and give a diagrammatic

version of symmetrizations and antisymmetrizations which build up
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Young operator526’27g As a trivial example,consider the Young tableaux

decomposition of a Kronecker product @@ =+,

given by

“ = * +E:'Jr'] . (3.27)

Another convenient diagrammatic tool are gperators which we
introduce by a simple example. Suppose we want to antisymmetrize
(3.15) in a and b indices, and contract j and i indices. This is
accomplished by the operator

N

-

which we apply to (3.15) by superimposing it over corresponding legs:

0

p

We conclude this discussion df diagrammatic notation by an
illuminating observation due to Penrose 19,26 . S0(3) invariance
algebra has primitives Gij and Eijk’ and in the diagrammatic notation
all scalar invariants are closed cubic graphs. For planar graphs
the value of the corresponding scalar invariant turms out to be the
. number of ways of colouring the lines of the graph with the three
colours meeting at each vertex. In general an invariance algebra can
be interpreted as a "colouring rule" which assigns a combinatoridl weight
to a given diagram. Thié is precisely the fole played by internal
symmetry groups in physics - there the associated Lie algebra factors

count the number of degenerate states contributing to a given process.
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In this context it is quite conventional to describe the invariance
algebra in terms of projectors rather than generators. In generator
formalism a Yang-Mills theory with massive quarks of n colours and N

massless glucns is defined by the classical lagrangian density

OC = ~LE*F 4+ 3l H-miq

4+ ¢ Cuy

Y P, Y A AR AY
FL, = B AL: - ) Af + C‘:f_g Aj Ak _ (3.28)

Dofa 20 - ¢ A (TE

In the projector formulation one replaces A:I._U(T:I._)I‘:1 by AY = Ag\)(k). This
is an element of the invariance algebra obtained from an arbitrary )
hermitian operator matrix A” by A" = PAY. Now the Lagrangian density

is given by

o= ?l- T (FF) + (ib’*m-)q (3.29)
F,ﬂ\f____ QMAV'- )YAAA N L.a [ A){) A"]

A NH M
D q = (B + tgA )q
and the projectors P appear as the group theory factors in gluon

propagators
C Ch M A v
<AV, ATy = PSPy <A, Al )
- P:; D”v<7“j> ©(3.30)
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For example, 't Hooft 35 uses projector (5.5) for U{n) algebra, Callan,

Coote and Gross °° use (5.8) for SU(n) (the above even in the diagrammatic

7

notation) and Cheng, Eichten and Li 3 use (9.13) for SO(n).
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4.  CONSTRUCTICN OF INVARTANCE ALGEBRAS

I shall construct the projectors for various invariance
algebras by the following sequence of steps:

(1) state the primitives and the relevant consequences of the
primitiveness assumption.

(ii) list all basis tensors that can appear in the projector

expansion and explore possible relations between them.
(iii) for each of the above possibilities, substitute the projector

expansion into the invariance condition

9] R YD

and find all solutions.

(iv) compute the overall normalization of the projector from the

normalization condition

{ =
Ei -:Eiéz-. -“}"'
_ .2

(v) to identify the algebra, compute its dimension
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|
N = a ' (4.3)

-and

(iv} the index of the defining representation

_ 2N 2 (4.

A= _z
e n  Na&

Representations will be identified by Cartan's classification as 81(3) R
A2(8), F4(26), Fq(52), ve.., where thelnumber" in the brackets is n, the
dimension of the defining vec*tof spaoe  (for consistency the number n
in SU(n),80(n) and Sp (n) refers to the dimension of the defining vector
space, at variance with the conventional notatian Sp(%)). Different |
representations of same dimension are distinguished by their index,

except for the trivial case of cogredient-contragredient pairs.
5. &8 INVARIANCE + U(n), SU(n)

(1) primitives: only e ,

ii ject : » . | 5.1
(i1) projector bases: Y4 -4 (5.1)
Suppose that they are not independent:

0-2€ 1 )& - (5.2)

L4 ]

“/

with an wnacceptable solution n = - 1, and a trivial solution n = 1.

Contr‘actmgwithc: and weget O=n+bandl0=1+nb,
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Hence the tensors (5.1) are always independent. The projector is of

form

LY =4 0K

(5.3)

(iii). the invariance condition (2.5) is already built into the

formalism, i.e. T; are hermitian,band consequently A and b are real.

(iv)  the normalization condition (4.2) yields

' <5, (5.4)
= + b
with two solutions:

Case 1. A =1, b = 0. The projector is given by

% I --)( | Un) algebra (5.5)

Case 2. A =1, Tr(r.) = 0. This additional tracelessness condition
i aactona

substituted back into (5.3) yields b =‘%, and the projector is

. : :)( --;;x Su(n) (5.6)
-a = Ah (n)

(v) algebra dimension
Case 1.  N=(0f =n* (5.7)

Caze 2. N = 00 '%0 = h*~1 (5.8)
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(vi) index

Case 1. U(n) is not semisimple:

L =2n— - 2 €0 O - (5.9

‘hut all scalar invariants are still computable. In our definition

(4.4) index is a ratio of scalar invariants and therefore computable:

' 2
g"lz 2n"-1) (5.10)
n
Case 2. 1o (5.11)

Comment Relation (5.6) is a reduction algorithm in the sense that it

rewrites a scalar invariant with k loops as a sum of twe scalar

invariants with (k-1) loops. It is also a Clebsch-Gordon series in the
1

sense that T & V = ++ is written as a sum of a singlet T\”x

|
and the adjoint representation ’ajx

6. of, 2 INVARIANCE + SU(2), Sp(n)
(1) primitives s 3 -l (6.1)

Primitiveness assumption requires

(6.2)
D = X, X0
(usually a = 1)

ab

£ has an inverse é—f C if det (£;) # 0, so it can be realized only

b
in even-dimensional spaces; n is even.

(ii) projector bases )(, -~ % . _ (6.3)

Two possibilities arise:

Case 1. The above bases are not independent. Taking into account £

antisymmetry, the most general relation is of form
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. Y
0 = g o IR o

[ ] . _
Contracting with o and‘c , Wegeto=n- bando=-1+bnTl-,

with n = 2 as the only solution:

& HX

SO £ ig proporticnal to Levi-Civita tensor in two dimensions. The

ll

(6.5)

projector is of form

_x ( ‘+LV) n=2 | (6.8

Case 2. Bases (6.3) are assumed independent:

_;:_A((+b"’+c ) (6.7)

(iii) invariance cond:.t:.on.

Case 1.

Contracting with Gab’ or from (6.5) we find b = - 1.

Note that this makes Ti traceless {i.e. from (6.6) O—'C = )

Case 2.
(6.9)

+},:<1';+C

. J




By assumption the above tensors are independent, hence ¢ = 1, b = 0.
Note that Ti is again traceless.

(iv) normalization:

Case 1.

_J_ - A(-—L —-‘z—_é_) (6.10)

As T, is traceless, A = 1, and the projector is

-

1 [ ==‘), R4
a 2 7N\ SU(2) = A (2) (6.11)

Case 2. The invariance of fab, (3. 16) -gives

- i - - l (6.12)

which reduces the second term in the normalization condition 1

e i ane/ A

so that A = 3, and the projector is

a o Sp(n) =Cn(n) (6.1%)
Z

{v) algebra dimensions

Case 1. N=3 ' (6.15)

Case 2. N = “(12‘*1) (6.16)

(vi) index

Case 1. L - =4 . (6.17)

Case 2. 2 n+? ' {6.18)

i1
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Comment SuU(2) = sp(2), because by (6.5) the two projection

*} operators are equivalent in n = 2 dimensions.
|
7. 62,£%°° INVARIANCE > SU(3)

(i) primitives —— A (7.1

By primitiveness assumption

*CD"":"(—"" )y 7o (7.2)

(usually a = 1). gabe obey a pure antisymmetry relation

=0 (7.3)

from which follow relations

(7.4)
=0
=0 (7.5)
(ii) projector bases: (7.6)

Two possibilities arise

Case 1. The above bases are not independent.

_LH:A”:‘ | (7.7)
& .
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Substituting this into (7.5) we obtain

% -0 | (7.8)

This is equivalent to (7.7), as can be seen by expanding

= QO _(7.9)

Still another equivalent relation is cobtained by expanding

=‘l !¥ z*‘#‘*m_“ _ (7.10)

Contracting (7.7)with ¢-¢ ' ylelds A

1
Lol
L]

- &

Contracting (7.7) with W/ vields n

1]

3, hence the relation (7.7)

can be realized only in three dimensions, and £3be is proportional to

levi-Civita tensor

\tf | (7.11)
- X

——

The projector is of form

"‘X )(H’A) =3 | (7.12)
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Case 2. Bases (7.5) are assumed independent:

Y bYW . & ﬁ ) 7.1
qx A()( b+ & (7.13)
(1iii) invariance condition

Case 1. 0= ;ﬁ +bﬂy‘ he3 , (7.14}
9 -

Contracting with we obtain b = ~ 4 .

L

v c
°=m‘+bm+3( (7.15)

Antisymmetrize all out lines and use (7.5) to obtain

0 = (1-b) % | (7.16)

By assumption the tensor is non-vanishing, because otherwise by (7.8)

Case 2.

this case would reduce to Case 1. Hence b = 1. Now resymmetrize indices

L
of (7.15) by applying # ° :

. |
0= + + =
ﬁ A X ﬁ (7.17)

By expand:.ng the third term and by (7.%) we obtain a reduction relation

for a chain of three fa'b € contractions:

__2% | T |
=" %*‘ﬂw& | (7.18).
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This reduces, by contraction with ,/ >0 to a relation of form

(7.7), hence Case 2, again reduces to Case 1, and the primitives set

(7.1) must satisfy (7.11).

Case 3. The antisymmetry relations (7.4)and (7.5) were the key to the
‘ unique n = 3 solution. For pedagogical reascns, to illustrate the type
of scluticn I will later obtain for exceptional groups, I shail show
what would have happened if I have missed the relation (7.18). From

(7.16) b = 1, and contracting (7.15) with obtain ¢ = -n-1.

Ti 1s now traceless.

(iv) normalization:

Case 1. As in (5.u4), A = 1.

YR
a 3 SU3) = A,(3) (7.19)

Case 3. From the invariance (3.16) of f‘ﬂ']:JC
o = u:)< + M "l" (7.20)

Contracting with gabe obtain

(7.21)

Hence the third term in the normalizaticn conditicon is reducible




_l_ :A(-J-+é-~% (7.22)

yielding A = —]2]1_-3, and the projector

Y-E0exeR) |
A = a3 A o( (7.23)

Note that this consistent with (7.11) and (7.49) for n = 3.

(v) algebra dimension

Case 1. N =8 . (7.24)
i+h
L) -2 (0060 -120s8)
= 4(n=-2) + 24 (7.25)
n+3
(vi) index
Case 1. o log (7.26)
2
Case 3. g1 o, 3n#22n+15 (7.27)
: {n+3) '
Commerrt The algebra dimension N must be an integer. This turns the

"partial ignorance" result (7.25) into a Diophantine equation with only

four solutions (trivial n = 1 is not realizable, because fa'b € can be

constructed only in n3 3 dimensions)
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|
n |3 5 9 21
N g8 15 30 77 (7.28) :

"Partial ignorance" is already sufficient to sharply limit the number é
~of n~dimensional spaces which could possibly accommodate primitives (7.1). |

The n=3 solution in the above list is trivial to construct, because any

fully antisymmetric tensor of rank n in n dimensions is proportional

to levi-Civita tenscr. The defining relation for levi-Civita tensor,

(7.8) and (8.8) for general n, states that no cbject antisymmetric in

(n+1) indices can be constructed in n dimensions. However, note that I would

have not known how to discard the rest of (7.28) if I had missed the

‘relation (7.18).

a
8. 8h s fabc...d INVARIANCEI + SU(n)

(1) primitives: -, ﬁ ; r>3 . (8.1)
PR

A fully antisymmetric object can be realized only in n 3 r dimensions.

By primitiveness assumption

'ﬁ’ | (8.2)
. = 2 (8.3)
m = :.: ete.

must be expressable in terms of

:

i.e., various contractions of f ab. . .d

68, otherwise there would exist additional primitives.

(1ii) projector bases: )( , x (8.4)

z
£
|
|
i
i
i
i
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According to (5.2) they carnot be related, so the projector is of form

(5.3).

(1ii) invariance condition

o= tsp + b T\ (8.5)

contracting fram the top get 0 = 1+bn. Antisymmetrizing all out legs

get

(8.6)

and contracting with Gi from the side get 0 = n-r. As in the preceding
Sections, (8.6) defines levi-Civita tensor in n dimensions, and can

be rewritten as

" (8.7)

(Conventional lLevi-Civita normalization is no = n!)

The above solution b = - % makes Ti traceless, and it is the same as

the Case 2 cbnsidered in Sec.5. To summarize: the invariance Condition
forces fabc...d to belproportional to levi-Civita tensor (essentially
because in n dimensiocns lLevi-Civita is the only fully antisymmetric tensor

of rank n), and the primitives 5%, f

Elb'_.d(rank n) have SU(n) as their

unique invariance algebra.
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9. 63, d® INVARIANCE -+ SO(n)
(i) primitives  m4— , =t=0—b= - (9.1) ;

By primitiveness assumption

(9.2)
st o an el S g

(usually o = 1 )

(ii) projector bases }( b4 (9.3
N PN

Suppose that the above bases were not independent

o= ‘7‘—"%‘ +Az (9.%)

Contracting with V and C we obtain 0= 1 + nA and
n+1
5~
solution n = 1. Hence the bases (9.3) are always independent. The

0= + A, with an unacceptable solution n = - 2 and a trivial

projector jig of form

—é-x - AO‘ +bx+§z§{ ) (9.5)

(iii) invariance condition:

, +b + C ©(9.8)
0= A

The only solution is b = 0, ¢ = = 1.
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(iv) normalization: The invariance of dab, M.1) gives

‘ + _;- =0 | | (9.7)

which reduces the second term in the normalization condition

Bl . :-A(-J—“';?W)

a (9.8)
so that A = }, and the projector is
= Bh—i(n)’ n odd
| _ 7

| x 0 : 30(n) (9.9)

Y % z Dn {n), n even

2

(v) algebra dimension N = n(z;—l) (9.10)
(vi) index g -2 (3.11)

hence semisimple only for n > 2,
Comment By rotating and rescaling the defining vector space V it is

always possible to bring & to form 6%, In this case xa = Xy the

ab

representation is real, and there is no distinction between 5% s 6 and §

b
In the future I shall always replace 6%, a® primitives by 6 ab? omit

line arrows, and replace (9.7) and (9.9) by

I + l =0 (9.12)
A : (9.13)
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By (9.12),for real representations projector bases are antisymmetric.
10, &, &° INVARIANGE ~ Eg(27), ...

(1) primitives: — }‘. . - ' (10.1)

By primitiveness assumption

-‘Q—O— = o = y AL >o (10,2)

(ii) projector bases: )’( ; x 5 % . | (10.3)

Suppose that the above bases were not independent

‘ |
0= Y +A;D:\ (10.4)
™

Contracting with -I-{ : and , , we obtain as the only solution
the trivial n = 1. Hence the bases (10.3) must be assumed independent,

and the projector is of form

‘:lix :A(}(+bx+%ﬁ) (10.5)

(1ii) invariance condition

| v

t

Resymmetrize with to obtain

\ v C . -
o =(E+b) T AT (10.7)

it b it et . o st
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Subtracting from (10.6) we get

'_V
Q=00 —%—)[ ._—It_é:» m J (10.8)
__V (10,9)
0= n o | |

“ .

we get a trivial solution n

Suppose

1. Hence

Contracting with

_1 . . ~ _ _n+3 .
b = %, and contracting (10.6) with .., Wegetc=-=—. This

result is written more campactly by symmetrizing all out legs on (10.6)

ht 3 Springer's relation (10.10)

abc

A /é\ A {(10.11)
) ) |

can be eliminated. Note that a single 3=d b chain canncot be reducible.

By Springer's relation one of 3 possible chains of 3 d contractions

If it were, by symmetry the reduction relation should be of form

= A %\ + ﬁ:t‘l - (10.12)
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but upon contraction with \( oo this reduces to (10,4}, and hence
can be realized only for the trivial n = 1 case.

(iv) normalization

_._6 S £ A
A -_-.—.A(l 3 e ™ T ) (10.13)

A

As in (7.21), the third term is reducible, A = —Egg and the projector

is given by

_21\_)::.-{%()(—1——5-%-“—;-1&) (10.1W)

(v) algebra dimension N = ——= (10.15)
(iv) index = s 222 (10.16)

Comments The solutions to the Diophantine equation (10,15) are listed

in the Table I. To restrict them ton £ 27, we use (10.14) to

compute

2 _ (ebzz=ny o (10.17)

a* ~  (nh+9g)%




Ls,

Define a fully symmetric tensor dijk

dijk C%l ‘ (10.18)

ij K

By hermiticity of Ti’ dijk is real, and

N 2
- Z (dijk) 20 (10.19)
1’ j’.](

But from (10.17) this equals

3
-— a (1’1+1)(27—1’1) (10.20)

2 (n+9)?
hence n is restricted to n £ 27. This restricts the soluticns of the
Diophantine eqﬁation (10.15) to six, four of which are identifiable. T
presume I can construct the first three (A?, A, + A, and AS)’ in the
manner I shall construct a related set of algebras in Sec.15. I do not
know how to .gliminate n = 11 and n = 21 solutions, and for the
remaining E5(27) I lack a full reduction algorithm which would enable
me to compute any scalar invariant built from dabé constructions.
However, the scalar invariants I cannot campute are of very high order,

as their shortest loop must be of length eight or longer.

Springer's relation (10.10) enables me to reduce loops of length four

3 n—3 )( ¢ |
i - S +
= el T 203 3ot% EANaVECED

and the fact that for Eg (27 d =0 by (10.20) implies that

: -
é= a*—g 2)\1_0 n = 27 (10.22)
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Lie algebra (3.17) now gives a relation between projectors

a - .

Substituting (10.14) we get on the left hand side a term of form

but the right hand side consists only of treeswithout loops. Hence

(10.23) reduces loops of length six.

[ —
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a
11. 6b, d c...d

(1) primitives ge, f\ r > 3,
h iz

By primitiveness assumption

-4<<EE’?6- = A -
20

(ii) projector bases: )’( )= I‘ .

so the projector is given by (5.3).

(iii) invariance condition

o= +b

i

(ignoring the trivial n = 1 solution)

i

| set (11.1).

INVARTANCE + NO REALIZATION 7

{(11.1

(11.2)

(11.3)

(11.%)

(11.5)

Contracting from the top get b = - = Symmetrizing all out legs get .

(11.6)

Contracting with Gg get 0 = n+r, with no acceptable solution. Hence

there do not exist non-trivial Lie algebras which preserve the primitives
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12, ¢ fab INVARIANCE -+ S0(2)

abﬁ

(1) primitives — e, (12.1)

Here we have replaced 8 da_b primitives by (Sab’ as in Sec.9, and

b’
the invariance algebra has to be a subalgebra of SO (n). Furthermore,
b b is normalized as in Sec.6, and the invariance algebra must also be

a subalgebra of Sp(n), n even.

(ii) projector bases: * 7/ | (12.2)
s M\ , A

(they have to be ahtisynmetric by (9.12)), The projector igof form

%,x._- A(X—‘-%%) - (12.3)

(111) invariance condition

B B R

Antisymmetrizing in three lets get

= 0 -
h (12.5)

!
|
|
]
i
|
!
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This is just (8.8) for r = 2 case, and as before, one obtains (6.5)
(that the lines are now not directed does not affect the derivation).
Hence the second term in (12.3) is reducible, and the algebra is S0(2) of

Sec. 9, with dimension N = 1, and index g7t 2 0.

13. 6 INVARIANCE + S0(3), G2(7)

ab® *abe

(1) primitives — swsew 3 )\ X (13.1)

By primitiveness assumption
Q— = emm _’Ql' > 0 ¢ (13.2)
A B * ) (13.3)

(usually a=1 ). As there is no distinction between out-legs and in-legs,

1

£ sbe satisfies, beyond relations (7.3) to (7.5), an additional

symmetry relation

= 0 (13.4)

(ii) projector bases: * I ; (13.5)
27%) ° _

(they have to be antisymmetric by (9.12)). There are three possibilities:

Case 1. )—( -2 K (13.8)

As in (7.7), this means that

abe is proportional to levi-Civita tensor in
3.

The projector is of form

i - =
3 1 —A%,n-3 (13.7)

three dimensions, A £ 1, n =
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”CE.S.e 2,
X A)‘( X (13.8)

Antisymmetrizing in three legs get

0 = (1+B) (13.9)

This leads to two possibilities ' :

Case 2.1 f 2be OPey Jacobl relation(3.18 ). Substituting Jaccbi

relation back into (13.8) we have

B | |
aB ¥ - a XK (13.10)

Hence, if we assume any relation of form (13.8) beyond Jacobi relation
(B =2, A=0), this case reduces to Case 1. It is quite clear that the

primitives set (13.1), where f c obey Jacobi identity (i.e., f are structure

ab abe
constants) has only one realization, S0(3) = B1(5") = A1(3) , but I have

not been able to prove this from the primitiveness assumption.

Case 2.2 £, . do not obey Jacobi relation: B = -1, and (13.7) becomes

)_( +]i = Aocx (13.11) |
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By symmetrizing the two top lines, this can be rewritten as

_2a (N _ .
'ﬁ ..._3_(n %) alternativity (13.12)

relation

Alternativity relation is equivalent to a reduction relation for

three-~chains derivable from it

Ak

- +,é,+Ao<( %-—A)
e lh Al
2= he) < ke i

(second term vanishes by (7.4))

< 5 A ot (-l 2 2
R ST

W

Contracting (13.12) with 5., we get A =}§—

ab
Antisjrmmetrizing (13.13) we obtain
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_ 6
= hei (13.11)

which, contracted with yields n = 7. To sumarize, if f.. do

not obey the Jacobi relation, a relation of form (13.8) is realized

only in n = 7 dimensions, and fobe satisfy

alternativity

.H_,‘_A:%_(Zx._)(_X) - (13.15)

which implies the reduction identity

ns=7 (13.16)
ol ’ .
o a

The projector is of form

%X;A(*“'%X), n=7 (13.17)
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Case 3. Bases (13.5) are assumed independent:

(13.18)

...........

g = a n=3 (13.19)
?

This is equivalent to (7.8), so fébc is proportional to 3-dimensional

Case 1.

levi-Civita tensor.

Case 2.2

b (13.20)
0= I! + .:(‘ .

Contracting with ,,,., we getb = -1.

Case 3.

b K=
0=#~ *o&_#"'xx (13.21)
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We assume that the Jacobi relation does not hold, otherwise this

reduces to the Case 1. Now resymmetrize (13.21) with s

and obtain, using (13.W)

-, &b
0=w LN R * l”ﬁ (13.22)

Adding (13.21) yields

o= (b+ed -}:L + !g | | (13.23)

This leads to two possibilities.
Case 3.1 b = - ¢c. Substituting this into (13.21) and (13.22) and

subtracting yields (13.19), hence this Case reduces to Case 1. -

S + |
=7 # ﬁ (13.24)

A

Compute B from (13.3) by contracting with see

Case 3.2

g=-1 - (13.25)
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Substituting (13.24) back into (13.21) get

b-%
o= Bt

and, as for (13.20), b -

(13.26)

get

O

[ ]
= = 1., Contracting with Y

-

Y. L I G

(13.27)

" which is just (13.11). Hence the invariance condition reduces Case 3
to either Case 1 or Case 2,

(iv) normaltization

Case 1. = A A => A=1 (13.28)

The projector is

| _
2 X—- * )h = 3 S0(3) = 31(3) (13.22)

o =A(A.-?.‘z_é

(13,30}
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Noting that )—0— =0, get A=1, so

! = -1 '
‘é’%”* XA\ yN=7 G, (7 (13.31)

(v) algebra dimension

Case 1. N = 3 (13.32)
_ 1 -
Case 2.2 N = - EO' 14 | (13.33)
(vi) index
Case 1. 2 =1 ' (13.34)
Case 2.2 1oy (13.35)

Comments.  As will be shown in Sec. 18.  the proof that the
relation (13.8) has only two non—trivial realizations, three
dimensional (13.8) or seven dimensional (13.15),1is a simple proof of
Hurwitz's theorem. I have in addition almost proven that the

primitives (13.1) have only two invariance algebras, SO(3) and G,(7)3

2
I have only failed to prove from primitiveness assumption that S0(3)

is the only solution compatible with Jaccbi relation. I.et. me illustrate
how far primitiveness assumption takes me - this might shed some light
on the shortcomings of my approach in cases of other exceptional

Lie algebras. Primitiveness assumpticn means that all loops have to be

expressible as sums over trees, i.e.

..0-
A
X

= (o= 1 normalization)

%A' (by Jaccbi relation) ' (13.36)
ADCG+ ¥ +BX + i X+ (13.37)

H

il
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,§;= D(F + kX% AL
pp (A )
+F(.|.‘.L+q~+);.+;{k,+_p) (13.;8)
G SN R A B o

where I have exploited rotaticnal and flip symmetries of the four—

and five-loops. Various contractionsand Jacobi relations yield

1 B 1 1
A=B= 5 ,C:_G-,D:E: > ’F=?O-’G=—6——’
6(n+2) 12(n+2)

but T have not been able tc find a further condition that would fix

n = 3. However, we know that there is only cne algebra of Qartan rank
13 B1 = Ai’ and no other algebra has expansions of form (13.37),
(13.38). TFor example, using (9.13) we canwcompute for the adjoint

representation of SO(n)

Y = om0 J X ) (X XK s

This is compatible with (13.37) dnly for n = 3.In general the adjoint
representafion of any algebra has higher primitive invariants, such

as d;ayg

dijksl = (13.40)
ijkL
For sufficiently high rank these are reducible by the characteristic

equation for [nxnl] matrices (see Sec. & of Ref.B),

i
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4. S$ £ INVARTANCE - D2(6) = A1(3) + A1(3)+A1(3), G2(7)

ab’ “abcd
- (1) primitives — % . : (14.1)

By primitiveness assumption

—EP— = A — ‘
(14.2)

AXK =Koy @

(ii) projector bases * X - (14.4)
3 ,

They are independent, as otherwise
o= * + AX . (14.5)

antisymmetrized in all legs gives ﬂ = 0, We shall consider two

possibilities for the projector:

Case 1. J_X - *
a A (14.6)
| | N |
Case 2. -é-;:'-‘*A(** ﬁX) , b0 (14.7)

(1ii) invariance condition

Case 1. _ (14,8)

o
{
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Antisymmetrizing in 4 legs we cbtain (8.6), hence f sbed is proportional

to Levi-Civita and n =

Case 2. m h (14.9)

Two possibilities arisec:
Case 2.1 if (14.8) holds both tensors vanish, leaving b undetermined
n = 4 in this case.

Case 2.2 Assume (14.8) dees not hold.

Contracting (14.9) with C:" and ,_,, we cbtain:
3b n—4 ‘ (14.16)
0= + T3
4V |
hence bC = B2 | (14.11)
6

hﬁ— 2 bV ﬁ +bC l(14.12)
n-—1

Comparing with (14.9) we have

_ (n=1) (1+bC)
b = — (14.13)
| /(10-n) (n-1) ' (14.14)
hence _b+= ,
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4-n
= X /3000 (D)

C (14.15)

4 £ n, because no non-trivial f exists in less than four

abcd
dimensions. As Pig is hermitian, b is real and n £ 10. n = 10 is
excluded, because by hypcthesis b # 0.

(iv) normalization

Case 1 A =1, and the projector is

1 ; - * n=y SO(4) = D.(4) (14.16)

Case 2.1 n==4u4,b#0.

2b N
i — A= 2 L
= = A (* + VZK+ « ) (14.17)
Reduce the third term using (8.7);

_é_I:Al (|+%’:)* + %

There are two solutions: A =3,Db =+ Y, with projectors

_é_; + = -li'(* +\f—§3:o-é X) (14.18)
[ A AV RS X
—i{_i T2 (* 2o ) (14.19)




Case

' I _ + /[ (lo=n)(n-1) K
a 16~ H 12.0C
4<n<g 9
P (+),P =) are "dual" and "anti-dual" projectors with respect to
fébcd in the sense that
3(n-i)
o((lOn
(v) algebra dimension
Case 1 N =
Case 2.1 N+ = z 3
Case 2.2 N, = N_ = §§é2231- = - an-us + 27,325
' n T6-n
(vi) index
Case 1 2t
Case 2.1 g1 -1 .5

2,2

Reduce the third term in (14.17) using (14.3);
1 '}1;
2 +

Hence the projectors are
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=

(14.20)

.(14.21)

(14.22)

(14, 23)
(14, 24)

(14.25)

(14.26)

(14,27)



3
1
I
Tl
—
|z
+
s
et

6 [N _ 6nb*
~ i6~n| & 16-n
A 3,2 '
-1 - -1 - q(n+2) - - 2 03
2SS AT S g TNy (14.28)
Comments
Case 2.1 The two projectors (14.19), (14.20)are an explicit decomposition

of the adjoint representation of the semisimple algebra D2(6) of Case 1
into A1(3) + A1(3). We list various properties (setting for simplicity

aza_ =a_ =1 and using the Levi-Civita (8.7) normalization a = &)

= L + -'-X |
It T2 (): -2 ) : (14.29)
I - X T x (14.30)

! ——
{ ""'X + X I (14.31)
J

-+~ — .
Using -J— 3 -J— as a shorthand for the corresponding projectors we have

_"*_'0:_ - o , | (14.32)
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self-dual proiection  (14.33)
k _J__ anti-self~dual projection  (14.3%)

Case 2.2 A1l solutions of the Dicphantine equations (14.25)

and (14.28) are “

n oy B 7 8
N 3 9 14 21 (14.35)
et o2 L, w10

A1(2)' s 62(7) B3(8)

The first colum(Case 2.1) correspoends to SU(2),n = u because
complex 2-d:i.me1_‘zsional vectors are here represented by real UY-dimensional
vectorse.

62(7) appears in this series because the primitive f sbe of

Sec, 13 can be replaced by'ltsrdual fabcd

m\ = % ,n =7, (14.36)

where }\ ~ is defined by (13.16)and * is the seven dimensional

levi-Civita tensor f sbode fg)preser'ved by G2(7) because

(14.37)

(this can be cobtained by expanding trivial identities like
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From primitiveness assumption for Sec. 13 primitives

( % = A LX,LX |
Ve, “ 3 ,n=7 (14.38)
where & = dl_ 9 @ -— sz— .

e _ 2 J..@_.z_ L
o oL, =A\7 30('@+°<f'® (14.39)

B S s 5
Using (8.7) we obtain A = r/_%-, s 552

1s consistent with all above relations

It canbe easily checked
that (14.38) construction of fabcd
for Case 2.1 and that substituted in (14.21) it reduces the projector
to (13.31).

I do not know how to eliminate n = 6 solution of (14.35}, and

have not checked whether n = 8 really corresponds to B3(8).

RO 15

P TR S
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1WA, §. ., f INVARIANCE + SO(n)

ab’ “abe...d
(1) primitives =, fn yro> b
12..¥
As in Sec. 8, varicus loop contractions of f

(ii) projector basis: *

The projector is simply SO0(n) projector (9.13).

(ii1i) invariance condition

Antigymmetrizing in r legs we get (8.6), the defining equation for
levi=Civita in n = r dimensions. Hence the invariance condition

forces fabc g o be proportional to levi-Civita tensor, and the

invariance algebra is S0(n) algebra of Sec.9;

by e, &) is automatically preserved if the length (defined by

éab) 1s preserved.

A5 S Ay

(1) primitives — e,

By primitiveness assumption

'-O.:O #

T

>

A

(usually o = 1)

ab...d

the volume (defined

d INVARTANCE —+ Bi(S) AQ(S),Ca(lu), Fu(26)
. s .

(14A.1)

must be reducible.

(1%A.2)

(14A. 3)

(15.1)

(15.2)

n

(15.3)

(15.4)



i
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(1ii) projecter bases * H - (15.5)
R .

There are three possibilities:

Case 1.

2= = A K +B)(

(15.86)
Contracting with = | get A = 1. Contracting with € {
and , , get 0 =1+ Bnand 1 = ?;—1 + B, with solutions n = - 1,2. g
For n = 2 (15.6) becomes

'i-!ZH =~'Z(><+X—)() , h=2 (15.7)

The projector is of form (9.13), with n = 2,

Case 2

=AY B+ S

(15.8)

Symmetrization in all legs yields

12_(9_ @F = (A+ B)'[Ii!'-_rb;l' (15.9)

Neither of the tensors can vanish, because

(15.10)
{ :1.—-0
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leads upen contraction with gyee ton +2 =0, and

& L

leads upon contraction with ¢p e to 20 = 0, also unacceptable.
The remaining possibilities are

Case 2.1 1-C=0,A+B=20

SORER) <A (KOO

Contracting with €¢ get 1 = A(1-n). Antisymmetrizing from the top:

chtain

Y

The projector is of form (9.12).

Case 2.2. 1 -C#0,A+B#20, and (15.9) can be rewritten as

(15.13)

‘Frr@l_" '—_-ad)ﬁﬂ!

Contracting with (yee  we obtain 2 = D(n+2), and in this case

d c satisfy

ab
_ 2. characteristic (15.14)
n+2 equation

Turthermore, by contracting with

we obtain



h
0= + —:{a%' Jordan
identity (15.15)

The projector is of form

AN Ev-3

Case 3. Tensors )(,X,X,H,X,A

are assumed independent. The projector is given by (15.16).

(iii) invariance condition

Cases 1 and 2.1

0 =. fg‘ ' (15.17)

Contracting with cC.. obtain 0 = n+l, no solution.
Case 2.2
b
Q0= ‘_1?;3 aibve | (15.18)
From (15.15) b = 522

Case 3. The invariance condition is again (15.18), but lacking

analogue of (15.15) I do not Jnow how to continue. The primitiveness

assumption has to be complemented by a characteristic equation of type

{15.14) to fix the algebra. A nice example is given by the adjoint
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representation of SU(m) which has primitives (15.1) for any n
(taking n = N = m’ - 1 dimensional representation as defining),
but (15.14) is satisfied only for m = 3. This is discussed in the
Appendix B of Ref. g,

(iv) normalization

Case 2.2. As in (7.20), the second term in the normalization

condition is reducible

-

A(_J_ e _(i}_.)

(15.19)

and the projector is given by

} __x [* + n+2. ]
“'“° (15.20)

. . _ 3n{n~2)
(v) algebra dimension N = —375 (15.21)
o -1 _ 5n-22 (15.22)
(vi) index . L™= =57
Comments The 14 solutions of the Diophantine equation (15.21) are

given in the Table 1. The fouf are identifiable and belong to the
Freudenthal magic square - I shall now give their explicit

construction (this is not in the spirit of this paper, but I include

it as it might suggest ways of eliminating the remaining 10 possible
solutions). Note that (15.15), which I shall later show to be equivalent
to Jordan identity (the defining identity for Jordan algebras), was a
trivial consequence of the "characteristic eqﬁation" (15.14). At

this peint I can reduce loops of length three and four
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! é - __.\2: _E_Z-EA (15.23)

L - 3n+2 ) ( + T an=6 ﬁ
<+ T V) BIGYY) Y A SR VI (15.2%)

but lack an algorithm for reducing loops of arbitrary length. I will
now proceed to construct such an algorit]’u&i for the first three
identifiable solutions in Table I.

31(5) algebra Consider the Clebsch-Gordon series for the product of

two vector representations of S0{(m)

)(=%X+*+(¢(‘"¢7U) (15.25)

The first term is the singlet (N=1), the second term is the adjoint

representation (9.13) and the third term is the symmetric rank 2 tensor
rn(m+1)

representation (N =

- 1. ( Clebsch-Gordon series amounts to

replacing the three basis ){(,X, X by the above three orthoncormal bases).

Llet us introduce a notation for the symmetric representation

, }é Y B @3- 1ymoaa (15.26)

D_%(_nl(ﬂ'_@_ -1)ym even

2

Normalization:  we()mm = B - (15.27)

(here B = 1). By construction this representation is traceless

) =0 (15.28)

ok




.

Now I take this symmetric representation to be the defining representation

of the algebra to be constructed. The dimension of the defining
representation n is related to the dimension of the underlying SO(m)

oy

. mim+!)
n:O:@"‘lﬁ‘ =—7—-1 (15.29)

Define a series of symmetric invariants dab

= % = fﬂ | e
”“_:_ % (15.31)
’ L N . .

Expansion (15.265 enables us to compute all scalar invariants

c’ dabcd’ Ve _by

constructed from d

abe? d

abcd?

_ [{m+2 2
_o_ ..( 7 m)— (15.32)

5 _ (m+4 _ 3 ) A
8 m ' (15.33)
‘ﬁn%:’ :f’h A ﬁﬁ’ | (15.34)
. m .

.., and perform reductions such as
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We note that (15.14) does not hcold for this algebra unless d bed is

reducible, and

& _ Aﬁﬁj (15.35)

Contracting with ¢y ee and Y ¢ we cbtain
m2 - 2= mmene2l A7
w3 8 (15.36)
m3 3 - oa
2 m

vielding (m-3) (m+6) = 0, som = 3, A==, n = 5 is the only S0(m)

algebra satisfying the characteristic equation (15.14). From (15.13)

2
and (15.32) o =t¥ B . is reduced by

dabcd

-eam
- Z.P ’ m=3 (15.37)

Substituting (15.26) into (15.20) we obtain for the projector

' | 4 B, (5) ' (15.38)
sk =5
- 53 '
CA T 3/\ ,m=3 (15.39)

with normalization (15.27). It is easily checked that (15.38) is a

projection operator, and that N=3. Above two relations give a reduction
algorithm that enables us to campute scalar invariants constructed from
arny number of d b
A2(8) algebra By analogy with (15.30) define fully symmetric

(15.30).
C

invariants for the adjoint representation of SU{(m} (=Am_ (n), nﬂ:mz-l,

1
the defining representation for the algebra presently considered):




- Z
M ==
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(15.40)
(normalization of the Appendix B of Ref.
M= &«
)
The projector (5.6), normalized by
G~ =%
(15.42)
gives following reductions:
( _(im __2_-_) - ,
42, . ‘( T m (15.43)
{ _ (2m _-__3___) /Q\ (15.44)
42, /ﬁ\ =
| = =M - w
A2 - oa m (15.45)
Q
As before, we lock for the solution of (15.35) and obtain
8 _ .2 A
=g e v 2l g (15.46)
8 _ . A
m = E = 2 E
yielding (m~3) (m+3) = 0, som = 3, A =-%&;, n = 8 is the only solution
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satisfying the characteristic equation (15.14). By (15.45) dijkﬁ

is reducible

(15.47)

—

2
6

e

and (15.35) becomes

~ 2% (15.48)
-4 63 -

It was shown in Ref. 6, Fig.22c that the first relation is the
characteristic equation for traceless [3x3] Hermitian matrices, and
that (15.48) is the SU(3) relation of Macfarlane gz_ggie By (15.3)
and (15.43) the normalizations are related by a = %g a. Noting
further that g,/a = £, the index, we have from (5.11) a = BaO.

Substituting (5.6) into (15.20) we obtain for the projection operator

A (B (15.49)
' 3

E’T;:z)( -—é;: ,m=3 - (15.50)

with normalization (15.42). The first relation holds for the adjoint

representation of any semisimple Lie algebra (3:21).

C,(14) algebra. C, has two 14 dimensional representations. The

symmetric one we are interested in is distinguished by the index g1 =9 ,

and appears in the Clebsch-Gordon series for V & V, where V is the

m-dimensional defining spéce for Sp(m) = Qn (m) representation of (m :
Z 2

€
i
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t=nReiR (H-=X)

The first term is the singlet (N=1), the second term is the adjoint

representation (8.14) and the third term is the symmetric rank 2 tensor

representation (N= ESE%il— - 1). Let us introduce notation
Li- S\ )
= m mim-1) _
B "\ On_z_( 7 =1 (15.52)

Normalization:

o (15.53)
= (5 A

(I shall usually set B=1). By constructicn this representation is

traceless

-O = q C(15.5W)

and symmetric in the sense that it satisfies

""!""" ' (15.55)

n, the dimension of this defining representation is related to the

underlying Sp(m) by

h:o___.—é;- @ - % --rfn-O .;Ef“z‘_;')__[ (15.58)
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Qabed® +*- BY

Eiiéi | | (15.57)

by (15.55)

Define a series of symmetric invariants dabc’

=

ti

/"\ | - (15.58)

Expansion (15.52) enables us to perform the following reductions
(15.59)

= Et:ﬂ_ - _é_ \
8 m - (15.60)

and again obtain (15.34). As before, we look for the solution of

(15.35) and obtain

m- 2 - % = [mtm - 1) + 21 A
m3 _8 .o (15.61)
2 m

vielding (m+3) (m-6) = 0, som =6, A =~y n = 14 is the only solution.

From (15.3) and (15.59) a =4, and substituting (15.52) into (15.20)

we obtain for the projector

i A
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[ \
.é_ X - ’ n =14 C, (14 ) | (15.62)
I = ’ﬁ ‘T‘s':\ m=g (15.63)
) ,
wm = s, hotmalization, (s.6)

It is easily checked that (15.62) is a projection operator, and that
N = 21, as it should be for a 03 algebra.

Fu(26) algebra The above sequence of SO(3}, SU(3), Sp(6) reflects the

cornection of the rows of the magic square with real, complex, quater—
nion and bctonion normed algebras. I shall later show how in Jordan
algebra analogues of (15.53) and (15.57) appear, but my diagrammatic
notation is not suited to the underlying non-associative algebra.
Furthermore, because of non-associativity,there are no reduction
expansions analogous to (15.52), and one has to rely on identities
like (15.1W) tc; obtain reduction formulas of type (15.23) and (15.24).

I do not have a general reduction algorithm for FL‘(QB) .

a
16. Gb, fab’ dabcd INVARTANCE - E7(56),

(1) primitives waeqe~, }{ ; n even. (16.1)
By primitiveness assumption

—ii = (3* 5 B>o {16.2)

{here B = 1)

et = (16.3)
;.2_ 4@4- B =t
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(usually o = 1)

}( = X (18.4)

2
- 2B« o
m Y +C (16.5)
(B and C will be fixed by the invariance condition).

(ii) projector bases ;:é }{ ©(16.6)
? +

As this alzebra must be a subalgebra of the Gg , T ab invariance

algebra Sp(n), I have already incorporated the invariance condition

(6.12)into bases (16.6 ). The projector is of form
i 1 X (16.7)
L X =A o e

Purely for convenience I have chosen this as the normalization
convention for o, rather than (16.3).

(iii1) invariance condition

i

8.

Contracting with this can be rewritten as

TR )

| ~ Braumn's
0= - Z relation {15.9)
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B and C in (16.3) and (16.5) can be computed by contracting Brown's
'Y ]

reiation with f
= 3 ﬁ + E é @ (16.10)

Substituting (16.3) and (16.5)

z |
T +Bﬁ-s(ﬁ%ﬁ+cﬁ) Y

(16.11)

This gives a new relationship for (16.5)
I {3 o 38 _
b( - _E(—-—+B);n< 3(,( C+ ht1 B)){ (16.12)

The tensors on the right hand side have different symmetries and are

independent. Equating the coefficients in (16.5) and (16.12) yields

(n+1) (n+10) (16.13)

_ _ nth4
B=—%7 N

Hence invariance conditicn has brought (16.3) and (16.5) to form

: - (D) (n410) a (16.14)
"@“‘. = 12 -

' h+io 2 h+ (16.15)
2% - ek ¢ K
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with the normalizaticn o defined by (15.7).

{(iv) normalizaticon

i
= A - (15.17)

From (16.15} we have
_ A+ (0 Q_
.*n%5111 _4Sj§- = "Qé;" TG =
i (h+)(n+10) h+ (0
= ( EXY) AT 'J'

_ ~ h+io ‘ |
-4 3 (16.18)

~ X
so that the second term in (16.17) is reducible 9 A= —ngﬁ’ and the
projecter is given by |
a TN+l <
(16.19)
. . _ 3n(n+1)
(v} algebra dimension N = —5 (16.20)
oy . -1_ 4(n-2)
(vi)' index v (16.21)

Comments Solutions of Diophantine equation (16.20) are sumarized
in Table I. The identifiable ones include the entire E7 row of the
magic square. Invariance condition for d_ied is simply the Brown's
relaticn, and combined with the primitiveness assumption it yields

the dimensional constraints. As for E. and Fu, I do not have an

6
algorithm for reduction of arbitrary scalar invariants of E..
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17.  MAGIC SQUARE
The preceding sections have illustrated how one constructs the

invariance algebra for -a given set of primitives. This effort was

only partially successful for higher rank symmetric primitives; we

did not derive general reduction algoriﬂms,but.we did derive Diophantine

equations relating the representétion dimension n and the algebra

dimension N. They were

. ~ _ 360
I, series Nl(n) = 3n - 36+ 70
. e L 360
ES series Nz(n) = 4n - 40+ 9 (17.1)
E, series N,(m) = 6m - 45+ 360 n=2m
7 ~3 m+8 ° :
They cbey a suggestive recursion relation
Nz(k) = k-1 + Nl(k*i)
'N3(k) = 2}(—1+ Nz(k-l)
which ylelds as a next sequence
ES series. N (k) = 4k=-1 + N_(k-1)
L 3
360 (17.2)
= 10k - 52 + -]'c—:—,?

I have not been able to derive this series from invariance analysis
because I do not know the primitive invariants of E8, but T include
it here as study of the other identifiable algebras in this series
might lead to E8(248)7primitives. The integer solutions of (17.1)

and (17.2) can all be simultaneously parametrized by integer m:

N1 = 3m-66+360/m, n, = m=10
N2 = Um-76+360/m, n, = m-9
(17.3)
N, = Bm-93+360/m, ng = 2(m=8)
N, =10m-122+360/m, n, = N
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N is integer if m factors into any combination of 23.32.5 = 360. g
In the same parametrization indices are given by : 5

-1 _ 72

L7 =5 -

-1 _ “-7'2_

22 =6 = (17.4)

2_1 = 4 - 3 ]

3 m ’
while 1;1 = 1 by definition, because the defining representation is

also the adjoint representation. The number of integer soluticns is

finite and restricted by m < 360, N ¥ 1,n3 1 and ™% 3 0. |

i

For E6 condition (10.20) restricts n ton < 27; I have not found
analogous conditions for other series of solutions.

In Table LI list all the solutions to (17.3) and (17.4), and
indicate the ones which can be identified in Cartan's classificatiocn.
It is quite remarkable that our invariance analysis, which at no time
invoked Jordan algebras, yields the complete Freudenthal's magic

20 . .
square as well as Faulkner and Ferrar's extended magic

7 . . . .
SquaTE Particularly amusing is the series (17.2) which
contains all exceptional Lie algebras as well as D, which can also be
considered exceptional

The extra solutions to the left of the Freudenthal's magic square

suggest its extension to a "magic triangle".

Ni(-n) : 3

N2(—n) 1 8

N3(-%) 3 14 21

? - 2 3 28 (17.5)
N, (n) ’ 3 8 21 52

N, (n) 2 8 16 35 78

NS(%) "1 3 9 21 35 86 133

A 708 4u 78 57 78 133 248
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Cne can make a guess at their corigin by noting the similarity between
Secs. 14 and 16; the relations of one section can be obtained fram
the relations of the other by turning all symmetric objects into
antisymmetric cbjects and vice-versa. We hypothesize that the top

four rows of the magic triangle are cbtained from the bottom four

Tows by
E, series - A — D, A (17.6}
Eg series A -—-; L (17.7)
E, series s, }{ — o, x | (17.8)
Eq series -0t ;\ 5 [4 — iy, )Ak’ 1 (17.9)
and that |

N(n), &) -» N(-n), - 2(-n). (17.10)

All the solutions for (17.8) were'alr_’eady given in (14,35), Tor
(17.6) all the solutions are (here we exclude N > n’ because we are
locking at subalgebras of U(n), and N = n2 = 16 because the index

is not correct for U(4))

n 1 2 5

¥ |1 3 21 (17.11)

2 s 4 -

A1(2) |

This set of primitives conflicts with Sec, 6 unless f abe * 0 trivially.
For (17.7) all the solutions are

n |1 3

N1 : (17.12)

P 6 | |

A2(3)
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In Sec.7 we have shown that AZ(B) is the unique non-trivial soluticn

for this set of primitives. We do not know the primitives for Egs

but we can still guess that Nﬁ(k) - Nu(«k). That yields fouwr solutions

N g8 28 78 248
(17.13)

A2 DI+ E6 E8

which are suggestive insofar that D, appears, but they do nct reproduce
the fourth row of the magic triangle. --

The above observations are not particularly persuasive; we include
them only for their suggestive value, as in the past such numerical
tables had played an important role in motivating FreudenthalfTits
constructions 20’15.

In ocur construction the origin of the parameter m remains mysterious;
the underlying normed algebra structure which relates column entries
is not explicit. It is apparent from the work of Freudenthal 20,21
that entries along colums form chains of subalgebras, but we have

not verified that within our formulation of invariance algebras.
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18. RELATION TC OTHER NOTATIONS
In the preceding Secticns we have given a self-contained presentation
of our method for constructing invariance algebras. However, as the
formulation of invariance algebras in terms of invariant tensors
5?, fabc, ... and particularly in terms of their diagrammatic representations
-, )*N,’-- might present a conceptual block to readers accustomed
to other notations, we shall use the remainder of this paper to provide
a translation between cur and the eéfablished algebraic notations, and
identify those relations which have already been given by other
authcrs. As 1s custamary, we misattribute most of them; Springer's
relaticn had been derived by Freudenthal, Brown's probably first by Springer,
and so forth. We chose to call them Springer's and Brown's because those
authors were first to use them in the spirit of the present work, as an
axiomatic starting point for constructing corresponding exceptional lie algebras.
Tensor (or matrix) notatioﬁ is quite standard for classical

27 or Gilmore 29

groups (cf. Hammertmash ). let us give an example of
translating diagrammatic into tensor notation.by rewriting Sec.5.
Label the legs by a, b, ¢, d in counterclockwise order, and uge (3.2-5);

(1) primitives: ﬁg.

(ii)projector bases:ﬁg 63, 63 Sg . (5.1)

4 [ q Q T
O = Sb%4+b Edsb (5.2)

Contracting with 62 and 62 we get 0 = n +band 0 = 14nb.

LT THE = A(SESa+bsIs,) (5.9
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]

(T;)': A[(T;)t + b%f T*'(Tc)_J (5.4)

xe _ S5 Um) alqebra
Pib = obe noed (5.5)

(This preojector 1s simply identity, because the algebra is entire U(n)
algebra. All other projectors, like (5.6), project out subalgebras
of U(n)).

P - S H 0160 5 S age g

(This is scometimes called completeness relation 28).

2

_ sAC _ Aa.c
Case 1. . N = PCa = SaSC = n (5.7)
. s8¢ _ 1 a.c_ 2
Case 2. N = Gaac = Gcéa = n 1 (5.8)
1 - —-—
-3 Cijk CjiR. = n (SkR. 2 Tp (Tk) T'r (T.Q.) (5.9)

Literature discussions of classical groups are considerably longer, because they
usually involve an explicit construction of the generators of the group.
As we argue in Sec.2?, this is superfluo;s; projectors fully define the
invariance algebra.

Rewriting abstract products in tensor notation amounts to

introducing a basis for the elements of the underlying algebra A
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a (18.1)

x=Xx e for real representations (18.2)

This is simply a notational device, ot a choice of a pax'tiéular
basis set; e, can be any n 1linearly independent elements of A. In
Freudenthal's notation 21 a derivation is a trilinear mapping

A ® A ®A + A denoted by

Dz= <X,y >3z ' (18.3)
In tensor notation this mapping is performed by the projector (3.8).
Indeed, if we substitute (18,1) in (18.3) and replace (2.9) by
_ _pbd c |
DZ z ;IP];C XY (18.4)
we obtain
ad c

<ea,eb>ed=anc e . (18,5)

Algebraic notation is more campact than the tensor notation, but not any

more compact than the diagrammatic notation;

<X,y >z «> I (18.6)

In addition, the diagrammatic notation makes explicit symmetries that
are not cbvious algebraically, such as D 4> y, x#z interchange symmetry
in (18.8). In the following Sections we illustrate the above by rewriting

the literature results on G2, Fq, EB and E7.
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19, HURWITZ'S THEOREM AND G2(7)
Definition 30: a normed algebra A is an n+l dimensional vector

space over a field F with a product xy such that

1) x (cy) = (x)y = c(xyj ce T
i1) x (y+2) = Xy+xz ' X ¥a2€ A
(x+y)z = Xz+yz ’

and a nondegenerate quadratic norm which permits composition
111) N{xy) = N(x) N(y) , N(x) e F . (19.1)
Here F will be the field of real numbers. Let

’ {eo,el,...,en} be a basis of A over T;
X=x€ +xe, + ... +x€ 3 x%x €T € A
0 0 171 nn’®"a » €5

It is always possible to choose e, = 1 (see Curtis 30). The product

of remaining bases (18.2) must close the algebra
ejep = -dyl v f e dpr fape  EF
C@8se.,Cc = 1,2 .1

We define the norm  in this basis by
i : ‘
N{x) = X+ dab X % (19.2)

From the symmetry of the associated inner product 2

(x,) = (v, %) = - S l;I(X) S e

it follows that - dab = (ea, eb) = (éb, ea) is symmetric, and it

is always possible to choose bases ea such that

+ f (19.‘4)

©% = 7 % *fape %
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Murthermore, from
- (X y,x) i-N(xy+x);N(x)N(y) - N(x) N+ E N(y) - 1
= N(x) {y,1)
it follows that f_ = (e_e se ) is fully antisymetric . (In Tits'’

notation the multiplication tensor f =be is replaced by a cubic anti-
symmetric form {(a, a'.a"), his eguation (1%)). The composition

requirement (18.1) expressed in terms of bases (19.4} is

o
1]

N{xy)} - N(x) N{y)

N Xaxbycyd (Gac de - Gab ch * fac:e fcbd) (13.5)
To make a contact with Sec. 13 we introduce diagrammatic notation

(factor i ‘/"d? adjusts the normalization )

a
f = 1\/@ A (19.6)
abc o ¢ c

Diagrammatically (19.5) is given by

%R
o= IHJ '-'f\+oﬂ (19.7)

. This is precisely the relation (13.15) which we have proven to be

nentrivially realizable only in 3 and 7 dimensions. The trivial realizations

aren=0andn = 1, fabc = 0. So in Sec. 13 we have proven Hurwitz's
30 . \ :

theorem : n + 1 dimensiocnal normed algebras over reals exist only for

n=20,1, 3, 7 (real, conplex,quatemion,dctonion). We call (19.7)

the alternativity relation because it can also be cobtained by

substituting (19.4) into the altermativity condition for octonions 31

[xyzlz (xylz - x(yz) (19.8)
[xyzl= [zxy] = [yzxl= -[yxz]
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1
Cartan was first te note that 62(7) is the iscmorphism group

of octonicns, i.e. the set of transformations of octonion bases

e; :(%m + 1 Qm)eb

which preserve the octionionic multiplication rule (19.4). The
reduction identity (13.16) was first derived by Behrends et al. 32
and independently by Tits 2 (in very different notaticn, his equation
(16)}. Tits also constructed the projector for 62(7) by defining the
derivation on an octicnion algebra

Dz = <x, y>z

=1 l(x.y).2) + % [({y,z2)x-(x,2)y] Tits (23)

where €a*®p = fabc ec (19.9)

(ea,eb)E - Gab (18.10)

Substituting (18.2) we find

(Dz)d = =3 X Vi [.% (Gad S = aac de) +-%-fébe fecd J z,
The term in the brackets is just the G, (7) projector (13.31), with
normalization a = - 3 in (18.4). The non-hermitean normalization
a = - 6 in (13.2) does not follow our convention (3.11-13) and we

prefer to replace (19.9) by

(ea.eb)E i fébc e, {19.11)

analogous to (2.13). In that case the normalization

O = 6 — (19.12)

has a simple combinatorial interpretation; if we colour the diagram
(19.12) with seven colours, and require that colouring around the
vertex is such that for any twe given colours there is a unique

third colour allowed (triality!), then there are 6 possible colouraticns.

e i
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20.  JORDAN ALGEBRA AND FH(ZS)

Consider the exceptional simple Jordan algebra of traceless Hermitian

20’31. The non-

[3x3] matrices x with octonion matrix elements
associative multiplication rule for elements x can be written in

basis (18.2) as

_ _ 8ab
eg Fee. T 1 + dp Lo (20.1)

1, 2 ...26.

H

a, b, ¢

where Tr (ea) 0, and 1 is the [3x3] unit matrix. Traceless

[3x3] matrices satisfy a characteristic equaticn

S -1Te x4l =0 (20.2)

Substituting (20.1) we obtain (15.14), with normalization o=¥-.

Substituting (20.1) into the Jordan identity

G = x(yx?) - (20.3)
we obtain (15.15). It is interesting to note that the Jordan identity
(which defines Jordan algebra in the way Jacobi identity defines Lie
algeébra) is a trivial consequence of (15.14), | |

FM(ZS) is the group of iscmorphisms which leave forms
Tr(xy) = 6 x_ %, and Tr (xyz) = d Lhe XaYhZc invariant” The derivation
is given by Tits 2 as .

Dz = (xz)y - x(zy). Tits (28)

Substituting (20.1) we obtain the projector (15.20)

5.6 & & clb d d d
. ad "be-"ac "bd ceead - "ace “ebd
(Dz)d- 3xyy 5 | + 5 ) 2

(20.4)
Note the definiticn dy. = Tr (eaeb ec) is analogous to (15.30),
(15.40)y and (15.57); the crucial difference between those invariants

and the FH(ZB) invariant is that the underlying algebras are associative.
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This endbles us to give reduction algorithms in terms of projection. .
operators for B1(5), A2(8) and 03(14) representations, but not for

F4(26).

21.  SPRINGER'S CONSTRUCTICN OF EB( 27)

Consider the exceptional simple Jordan algebra A of Hermitian

20,21,3

[3x%3] matrices x with octonion matrix elements , and its

dual A (complex conjugate of A). Following Springer 3 define products

(x,y) = Tr (xy) (21.

xXy =z (21.

3 X,y,2> = (xXvy, z)

and assume they satisfy

(xX %) X (XX X) =< X,X,%> X (21.

Expanding x, x in bases (18.1),n = 27, we chose a normalization

(ea,ebz» = 62 (21.
and define
eaxeb =d, . e (21.

Substituting into (21.3) we obtain (10.1C), with a=%. Freudenthal 21

and Springer 3 prove that (21.3) is satisfied if dabc

1)

2)

3)

4)

5)

is related to the
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usual Jordan product
€08y = dabcec (21.86)
by
= ; I
dabc = dabc 3 (Gab Tr(ec)+ Gac Tr(eb) + Gbc Tr(ea))
(21.7)

1

+ 2 Tr(ed) . Tr (eb). Tr (ec)

E6(27) is the group of iscmorphisms which leave (X,y) = 6]; xayb

and <X,y,z>= dabc X, Yy %, invariant. The derivation was constructed
by Freudenthal 2 (his equation (1.21)):

Dz =2<x,y> z = 2yX (xXz2) - I <,2>% - +<X,¥> 2z

Substituting (21.4-5) we obtain the projector (10.14), n = 27;

- _ b _ac
(Dz)= - 3%y Py =z, | (21.8)

The object< x,y> considered by Freudenthal is in our notation -J-
and the above factor -3 is the normalization (3.19), Freudenthal's
(1.26). The invariance of x-product is given by Freudenthal as

< X, xXx > =0 |
Substituting (21.5) we obtain iu.l) for A .
22.  BROWN'S CONSTRUCTION OF E.(56)

Brown & considers a finite dimensional complex vector space A

with following properties

i) A possesses a non-degenerate skew-symmetric bilinear form {x,y}.
ii) A possesses a symmetric four-linear form q (x,y,z,w).

iii) If the ternary product T(x,v,z) is defined on A by

{T(x,y,2) sw} = q (x,v,2,w), then -

3 {T(x,x,y), Tly,y,y)} = (yl atx,y,y,y) (22.1)
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Substituting (18.1) into (22.1) and defining

ab

@, &Py = ¢ (22.2)

b abcd

q (e, e , e°, ed) = g (22.3)

we obtain Brown's relation (15.3) with normalization a =4 The
derivation was constructed by Freudenthal (&P on p.225, Ref. 21),
but not in a form that can be readily ccmpared with (16.19).

Another variant of the above axiomatization is a symplectic triple

system 33,34 defined by a ternary product [xyz] .e A which satisfies
[xyz] = [yxz] Co(22.4)
[xyz] - [xzy] + X,y} z - {x,z2} v - 2 {y,z} x =20 (22.5)
Cxyluvw]] = EExyu]vw]+r TulxyvIw] +Euvixyw]l] (22.6)

Prom the last relation it is clear that this product is a derivation
Dz = [xyz]
Indeed, if we subsgétute (%8.1) and define
- e
[eaebeg = e 24P f . f

ac “eb "fd’
or diagrammatically A z
(Dyzl, > = (22.7)
a x y

(the extra fab factors make this an invariant of A alone; A can be
considered pseudo-real), it is easily checked that (22.4-6) are
satisfied. In particular, (22.5) follows from application of . }E‘

to the projector (16.19), n = 563

3 \;t:ﬁ = %()C‘:ﬂ:) (22.8)

i We tharnk T. Springer for bringing this to our attention.
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23, S0(W)

In Sec. 14% we have shown how D2(6) decomposes into A1(3) + A1(3).
This has been used in the study of the classical solutions
of Yang=Mills theories, in the .followj_ng form; 't Hooft 38-40 maps

the vectors of one S0(3) subalgebra on self-dual SO(4) tensors Au\) by

A =n A a
v apv “a
H H Y

" n

12,3 (23.1)
325351

and the vectors of the other SO(3)ﬁ_subalgebr~'a on to anti-self-dual

SO(4) tensors Bu\) by

3 = n B (23.2)

We do not need his explicit representation for n,n S0(3) generators,
as our projectors (14.18) and (14.19) already describe the subalgebras.

They are related to n,n of 't Hooft by (2.21)

p(*) - - 1
By T " aag Napv (23.3)
-) .1 = -
F af,uv m Nagd Napv ' (23.4)
’r L
Diagrammatically Nang = «4"a 7 Moy g = <« and
38-40

various identities for n,ﬁ\f_gllow from the relations of
Sec. 14,

For example, substitute (14.33) in
+ +
I .
= = (23.%)
- & ol

and use (8.7) to cbtain

+ +
' - (23.6)
% - 3{\.&. |
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In 't Hooft's notation this is

§ n + 6 0 {(23.7)

+ + =
K ‘auv KV naku 6Ku navA nacn Ekuvo




APPENDIX

Here we list some identities for I“"L+ series which 1llustrate how

the projectors and the characteristic identities satisfied by the

primitives are used to reduce complicated invariants. Fu(EB) identities

3 are given by n = 26,
—_—) = O simplicity (15.2)
—~CO = X normalization (15.3)
ﬁ:\ . 2« characteristic equation (15.14)
h+2

From these follow:

A -y A (15.23)
2(n+2)* y v (15.24)
— = (3n+2) )(+,\) -(h+6)x-(n-6)(n+2) )

« [ v %
= =113 -_ + -
2_3( %} ,‘-,:é] /“ J = 26 (A1)

1 _ _ n*ion-1s_ R (A.2)
no3 =T T a(n+2)? = T2.7%
h=214
| & )
_}"l-:(: = h 3h+8 h:loo - __ZZZ-- (A.3)
4(h+2) 4.73

(3n+10
"r-‘l—d—‘; )3 ||1 (A.W)
12 (h+2) 12.73




From the definition of the projector

8
BLX = [* ez #} o (15.20)

—)— =a— normalization (2.1%)
"a’"U“_‘ _:1‘" = 1&?—% —t— (15.21)
+dy - s A . (A.5)
-&%7- = -‘Z-l— (A.6)
+ O f“;?f.‘ (15.22)
- un v E i I

G _ 5n-22 T | § n-g (A.8)
gtj::( B Tﬁs:a{ h+10 [ ’\+)(+X]+al hio x % i
neg 2N oz p/ n-z K A.9)

t A7

—_”g _—_(n;z)"{az n42-_4/\<+|_|+(“ ]5\.{4—[1 ““)]H}(A .10)

"

2|~

- |-

O AL 125n’--|7§bh+“2° - _______-7"3"7‘_;” (A.11)
N & 22 12(n+10) lheae 273
s . & (Bn-22)Y(5w2-41n +170) (A.12)
Nt B (n+10)* (Tn—20)
n _r (Sn—11)3(85 h-50in%+ {0650 n - 50000 ) - I_%_lj_ (A.13)
Na* 4 (h+16)* (7n-20)* nez

_ 5 (5n-22)*(2n*+ 450>+ 4758 n - 25240 ) BT TN
NZ* (n+10)4 (7n-20)2 ’ z .

h=24
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m 8 9 1012 15 18 20 2/ 30 3F 40 45 €0 72 90 120 1O 360

representation dimension n

Ny 5 B 10 14 20 26 30 35 50 62 80 M0 170 350
ns 3 6 9 15 2127
Na ‘ 2 4 B 14 20 24 32 44 §f 64 74104 128 164 224 344 704
Na 3 8 14 28 52 78 36133 190248 287 336 484 €03 782 1081 1680 3479
algebra dimension N
N1 3 8 12 21 38 5§ 63 77 120 155 208 297 476 1015
N2 2 8 16 22 35 % 78
Ni ; 1 3 9 2135 45 §6 92 133 156185 273 344 451 630 989 2068
N 4 3 8 14 28 52 78 96133 1902/ 8 287 336 484603 7821081 1680 3473
representation index 1”
¥ 12 3 s
E 0 2 3 4
Iy 0 1 2 3
y 11 1t 11 1 1+ 1 vt 1t 0 0
Cartan classification
Bandgpe B1 Az (s Fa
65, ,abe ! u [A2AzA: As Ee
F3b, abed iA13a|Cs As  Dg E;
Eg series Bq Aan D4 F4 Es E7 Es

Table T.

All scluticns of the Diophantine equations of Sec. 17. The solutions which
cannot be realized are given in small print. Alpebras within the solid box
form the Freudenthal's magic square; +the dotted box is the extension of

magic square of Faulkner and Ferrar.





