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1. 

1. INTROWCTION AND SUMMARY 

The 19th century study of invariance groups reached its peak with 

Cartan's classification 1 of canplex Lie algebras. He gave an explicit 

construction of generators of all possible canplex Lie algebras , but 

did not give the invariants associated with each algebra. Most of the 

entries in Cartan' s list of allowable algebras were immediately 

identified as representations of the classical invariance algebras SO(n), 

SU(n) and Sp(n), but of the five exceptional algebras Cartan identified 

only G2 as the algebra of generators of octon:ion isanorphisms. The 

fact that the orthogonal, unitary and syrnp].ectic groups were invariance 

groups of real, canplex and quaternion norms suggested that the 

exceptional groups were associated with octonions, but it took more than 

another fifty years to establish the connection. The remaining four 

exceptional Lie algebras emerged as rather canplicated constructions frcm 

octonions and Jordan algebras. 

In the present paper we attempt to give a unified construction of 

both classical and exceptional Lie algebras as invariance algebras 

(without recourse to octonians and Jordan algebras) and find the most 

economical way of canputing the values of associated invariants. From 

Cartan we take only the classification, as the standard for identifying 

invariance algebras, and occasionally as a hint of the underlying 

invariants. The spirit of our approach is close to the aximatic 

. f T" 2 S . 3 d B 4 ( h ) constructions o its , pringer an rown am::>ng ot ers ; 

instead of constructing explicit representations of group generators, 

we characterize the algebras by representation independent identities 

satisfied by the group invariants. 
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The unifying concept from which we strive to generate all invariance 

algebras is the notion of pd.mi ti ve invariants. They are generalizations 

of classical invariants such as length (cor'r'esponding to invariant 

tensor cab) or volume (cor'r'esponding to Eabc). By an invariance algebra 

we mean the algebra of a maximal set of generetOI'S of infinitesimal 

transfonnations which preserve a given set of primitive invariants. By 

definition, any invariant of this algebra s:ari either be constructed 

fran the primitives or is itself a primitive. H. Weyl calls this the 

first main theorem of invariant theory: "All invariants are 

expressible in terms of a finite number a!!Ong them.
1
' 

5. Enlarging 

the set of primitives either restricts the number of possible realizations 

(cab is preserved by SO(n) for any n, but oab' Eabc only by S0(3)) or 

restricts the invariance algebra to a subalgebre (~ is preserved by 

U(n), but ti~ ,cab by SO(n)). To make the notion of primitiveness an 

effective canputational tool, we augment it by the primitiveness 

assU111ption (2.6): any invariant can be expressed in terms of .tree 

contractions of primitives. This is possibly the m:>st problematic 

step in our approach; we assume not only that every invariant can 

be constructed frcm primitives but also that it can be reduced to 

a ,particular basis set' 

It is easy to state classical primitive invariants explicitly: 

011= 1, 012 = D, ••. ,£132 = - 1, ... ,but we would not make much 

headWay if we were to define canplicated primitives in this fashion. 

A hint of a more elegant formulation is provided by classical algebras; 

we note that to define SO(n) it is sufficient to specify that the 

primitives are ti~, dab with dab symnetric, and similarly Sp(n) is 

defined by primitives ~· fab with fab antisymnetric. In this spirit 
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we shall specify each primitive by its symmetries. As our intention 

is not to determine all possible invariance algebras but merely to 

establish a procedure for constructing the invariance algebra for a 

given set of primitives, we shall consider only three types of primitives: 

o~, fully symmetric dab •. f and fully antisymmetric ~· .d. This will 

suffice to construct the lowest dimensional representations of An' ~· 

Cn, Dn, G2, E6, E7 and F 4, as well as some higher representations of 

classical groups. 

The crucial difference between our and Cartan's approach is that 

we describe the invariance algebra in terms of p:rojectors P (2.17-19), 

rather than in terms of generators T. ( 2. 8) • This saves us the effort 
J. 

of constructing an auxilliary adjoint representation space; the 

projector projects out an element of the invariance algebra fran an 

arbitrary element of U(n) without any reference to a particular Ti 

basis set. FurtheilllOre, projectors are invariant tensors and by 

primitiveness assumption expressible in terms of primitives (2.23). 

The invariance conditions (2.4) then fix the constants in the projector 

expansion and force the primitives to satisfy certain algebraic identities. 

Our attempt to carry out this ,progranrne is only partially 

successful, and beyond the classical invariance groups we derive 

G2 (incidentally proving Hurwitz's theorem) and partially characterize 

F 4, E6 and E7, generating in the process the entire Freudenthal' s 

rragic square (Table I) and a host of algebraic identities. We 

surrrnarize our results by listing the sets of primitives considered 

here together with the invariance algebras they generate: 
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~ -+- U(n) 

~' :(3b -+- SU(2) = Sp(2); :(3b = e:ab 

Sp(n); n even 

(, ~c -+- SU(3); ~c = e:abc 

~' ~c .. d -+- SU(n); f = I.evi-Ci.vita tensor 

o~, dab -+- SO(n) 

~, dabc -+- Springer's relation; 

E6(27) +.second row, Table I 

o~, dabc •• d -+-no realization 

-+- S0(2); fab = e:ab 

-+-Hurwitz's theorem; 

fabc = R, C, Q, C' multiplication tensor 

i) Jacobi relation; S0(3) 

ii) alternativity relation; G2(7) 

cab' fabc .• d-+- SO(n); f = I.evi-Civita tensor 

o ab, f abed -+- D2 ( 6) = f\ ( 3) 11> A1 ( 3) , G2 (7) , B3 ( 8) • 

-+- i) characteristic equation; 

F4(26) + first row, Table I 

B1 C5) 

AzC8) 

c3C14) 

ii) no characteristic equation; ? 

o~, :(3b, dabcd -+- Brown's relation: 

E7C56) + third row, Table I 

o ,C , ? ->- E
8

C248) 
ij ijk 

guess for N, fourth r=, Table I 

(5.5) 

(6.11) 

(6.14) 

(7.19) 

{ 5. 6) 

(9.9) 

(10.10) 

(10.14) 

(9.9) 

(19.4) 

(13.29) 

(13.31) 

(9.9) 

(14.21) 

(15.14) 

(15.20) 

(15.38) 

(15.49) 

(15.62) 

(16.9) 

(16.19) 

(17.2) 
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These results are derived in Sections 5-16. To accustan the 

reader to the method and the notation we construct the classical 

invariance algebras before going on to interesting but unfamiliar 

exceptional algebras . The basic concepts and the diagranmatic notation 

for invariant tensors are intrcduced in Sections 2 and 3. The magic 

square is constructed in Sec.17, while in the remainder of the paper 

we canpare our results with the known".octonien and Jordan algebra 

results, and discuss some applications to Yang-Mills theories. 

The present paper is a self-contained presentation of results 

some of which were previously stated in Ref. 6 in the context of a 

specific theoretical physics application. Ref. 6 contains an 

exhaustive list of general references. For canpleteness sake here 

we list some further references which have came to our 

attention since the publication of Ref. 6; Refs. 7-17 on exceptional 

algebras and 18, 19 on diagramnatic methods. 
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6. 

We conclude this introduction with few general remarks about the 

m:>tivation for the above work, and its relation to the classical 

group theory methods. 

We are m:>tivated by quantum field theory, in particular by 

Quantum Chromodynarnics, i.e. quark theories in which quarks differ 

only in one discrete label (colour), but are otherwise indistinguishable. 

In the interesting models the quark colours can be relabelled, but no 

colour is preferred (the colour symmetry {~ exact). The algebra 

of allowable colourations is defined by the colourless canbinations 

we wish to allow. In the standard coloured quark model these are 

mesons formed from quarks and antiquarks (o~ invariant) and baryons 

formed from three quarks (e:abc invariant). As we show in Sec. 7, SU(3) 

is the unique invariance algebra for these invariants. Method of the 

present paper enables us to find the invariance algebra for any such 

m:>del. More generally, whenever we consider an exact symmetry we do 

not need any explicit representation of Cartan's generators T., but 
l. 

only the colour averages (all allowable colourations sunmed over) given 

by the projectors P. This leads us to more speculative motivation for 

the present work; invariants studied here are crude prototypes of 

Feynman integrals (instead of integrating over a continuum of mcmenta 

and energy states one suns over a finite number of allowable colourations). 

In this model of quantum mechanics probabilities are a class of scalar 

invariants with direct combinatoric significance, and the colouring 

rules are implemented by projectors. Formulation in terms of projectors 

rather than the generators is reminiscent of Jordan 1 s formulation of 

quantum mechanics , and study of allowable invariance algebras might 

lead to prototypes of quantum mechanics which cannot be formulated in 
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th . . f l' 20 e conventional Hilbert space orma ism In this crude model 

the adjoint representation is analogous to the photon, and the 

arbitrariness in the definition of the adjoint representation space 

possibly analogous to the gauge dependence of photons (for example, 

the invariance condition (3.16) is analogous to a Ward identity in 

field theory). Our hope is that a projector formulation of invariance 

algebras might suggest some formulation of QED in terms of gauge 

invariant probabilities rather than individually gauge dependent 

Feynman amplitudes. 

Regardless of where the abcve speculations might lead us , the 

present approach is already a useful tool for study of invariance 

algebras, in many ways complementary to the standard Cartan's approach. 

It is a method for constructing an invariance group from a given set 

of invariants ; Cartan' s construction makes no reference to primitive 

invariants. We have no list of all possible types of primitives; 

Cartan gives an exhaustive listing of all possible invariance algebras. 

Present approach is very convenient for co~uting complicated invariants 6 ; 

these are in principle computable from Cartan's explicit canonical 

representations, but in practice this is too difficult for any 

representation beyond a few low dimensional ones. Cartan-Dynkin and 

F.rBudenthal-Tits formulations are very suitable for the study of 

subalgebras (this aspect is emphasized by Ramond 11 ); present approach 

says little abcut subalgebras. In Cartan-Dynkin scheme all representations 

of a Cartan algebra are treated on equal footing; the present approach 

is unwieldly for higher representations. 

Ccrnpared with f.rBudenthal-Tits construction of the magic 

square, present approach generates various identities and the rows 
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of the square very quickly, but the connections between the co1Ullll1 

entries I'B1llain obscure, and the conditions that exclude col\lllll1s of 

spurious solutions are lacking. We can easily compute a large class 

of invariants for exceptional algebras; it is not clear how one is 

to use Freudenthal-Tits construction to compute any invariants. 

Finally, we have failed to find a set of invariants that generate 

the ES row of the square, but invariants of most of the entries of 

this row can be determined,and we hope theylnight: lead us to a so far 

unknown 
7 

linear realization of Es. 

Our results are in lll3llY ways preliminary, unpolished, and we 

would appreciate critical comrents and references to any relevant literature 

we might have missed. There are many unanswered questions, such as; 

1) what should be added to primitiveness asslD!lption in order that the 

exceptional algebras are uniquely defined? 

2) do there exist simple Ll.e algebras which do not satisfy the 

primitiveness asslD!lption? 

3) what is the simplicity criterion in terms of projectors? 

4) how does one determine the subalgebras and the branching rules? 

5) what is the connection between col\lllll1 entries in Table I? 

6) what are E8 primitives? 

7) what is the connection between types of possible primitives , and 

normed algebras? 

S) can one obtain Cartan's classification from projectors, rather 

than from generators? 

9) given a Cartan-Dynkin representation, can one find the 

corresponding primitives? 

10) what scalar invariants (beyond representation dimensions) should 

be integers? 
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2 • · PRELIMINARIES 

Let the defining space V be an n-d:i.mensional complex vector space 

with elements x :(x
1 

,x
2

, •• ,xn) and V its dual with eleirents 

( 
1 2 n a_ 1: 

x = x 'X' ···x ), where x = (xa) Let a finite number of arrays 

of complex numbers of form 

ab .. c b 1 2 g = gd ' a, ' ... ' e = , ' • • .n .. e (2.1) 

together with their duals 

gt= gt e .. d (gab .. c/' 
c •• ba - d •• e 

be invariants (or invariant tensors) of the invariance group G, a group 

of infinitesimal linear transformations over V, ii 

x'= x + i rf a-a aX·b (2.2) 

a, b, = 1, 2, ... n. 
b 

x ' 

where the derivations n:;, are infinitesimal complex [nxn] matrices. By 

invariance of (2.1) we mean that the polynomials of form 

( 2. 3) 

are invariant under ( 2. 2) 

P (x + i Tue, ••• ) = P(x, ••• ) • 

(Such polynomial is sometimes referred to as a form). 

Each such relation imposes an invariance condition on the derivations D: 

Da fb .. c 
f g d .. e 

Dtf ab .. c 
d g f .. e 

+ rf af .. c 
g d •• e + ... + D~ 

Dtf ab .. c 
e g d •. f 

(2.4) 

= 0 
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We shall be interested only in Uriitary transfo:rniations, i.e. 

transfo:rniations which preserve a complex norm 

N (x) = x x = ~ xbxa 

The invariance oondition for o~ relates D and Dt 

D~ o{, - D t~ o~ = 0 

(2.5) 

so that the derivations we consider are always Hermitian, D = Dt 

Constraints imposed on D by different invariance conditions ( 2. 4) 

·1 · de f abc · · 11 are not necessari y indepen nt. I D preserves g , it autornatica y 

preserves Composite invariants gabc gdef, gtabc gcbd' O~ gcde 

Clearly we have to distinguish between a finite number of primitive 

invariants, or primitives, each of which gives an independent 

constraint (2.4), and the infinite number of composite invariants 

which impose no further constraints on D. To clarify the notion of 

primitiveness let us introduce some terminology which will be self-

evident in the digrammatic notation: A composite invariant can be 

disoonnected (as o~ o~) or connected (as gt abc gcbd). A connected 

t cde t oornposite invariant can be a tree (as g ab . g g fh) or can contain 
~~ c e 

t cde t bf loops (as g abc g g efh g ) . Let W be some composite invariant 

(indices suppressed). Take a finite number of invariant tensors 

together with their duals 

1> {aababca 
J. = 0b' g , g gbc' ... } 

and oornpose from the invariants of this set all connected or disconnected 

tree invariants T(m) with the same free indices as W. 

Pr-:i.rnitiveness aSS\nnption. "J' is a set of pr:i.rni ti ves if 

i) any invariant tensor can be reduced to a sum over connected or 

disconnected trees of contractions of invariant tensors from the set ':?: 



CC a complex number), 
m 

11. 

W = l: C T(m) 
m m 

ii) no element of 'P can be so reduced. I For example, if 

1'.:> . {'a abc} di . . ) . h h . .r = ub , g , con tion i requires t at t e loop ccntraction 

abc t g g cbd is reducible 

abc t a 
g g cbd = a ob ' a > 0 

otherwise the set of primitives must include two rank 2 tensors, 

(2.6) 

( 2. 7) 

,a d a _ abc t 
ub an gd = g g cbd' Parenthetically, let us note that the set 

of primitive invariants is ~the same thing as the set of irreducible 

polynomial invariants of a,given Lie algebra. For example, the adjoint 
' 

representation of SU(n) (~-i in Cartan's notation) has three 

primitive invariants ']=> 

homogenous polynomials. 

= { o .. ' c .. k, d. 'k}, but n-1 independent 
l] l] l] 

As the notion of primitiveness is the basis of the entire 

construction of invarianoe groups attempted in this paper, it is 

important to emphasize that the above definition of primitiveness is may-

be not satisfactory. As it stands, primitiveness assumption falls 

short of uniquely defining oertain classes of invarianoe algebras, 

among those F4 , E6 and E7' I hope that the results of the present 

paper might suggest a sharper definition of primitiveness. 

If we expand the derivation Db in terms of some basis set of a 

[nxn J Hermitian matrices , invarianoe conditions ( 2. 4) beccme conditions 

on the algebra closed by the bases. We shall ccnsider two parametrizations 

of ~, one in terms of generators T 

e:i real, infinitesimal; 
Ti hermitian , (2.8) 
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and the other in terms of projectors P 

' 
infinitesimal; 

(2.9) 

Generators. In Cartan's approach one expands D in terms of N 

independent hermitian matrices T. (T. are trivially related to Cartan' s 
l l 

non-hermitian canonical bases E.) . T. 
l l 

close a Lie algebra. This 

can be seen by considering an N-dimensional ccrnplex vector space A with 

elerrents X = (X1 , x2, .•• ~) constructed by mapping 

X. = x T.y; Xe V, ye V. 
l l 

(2.10) 

'Ill.e transformations of the group G over the space A are generated by 

the adjoint (or regular) representation generators (C.) 'k 
l J 

x! = X. + i E.(C.).k lC 
J J l • l J "1< 

according to the action of G on the underlying v, V spaces 

-J ' - . -x T. y = x T. y + i E. x [T., T.] y 
J J l J l 

(2.11) 

(2.12) 

By comparing (2.11) and (2.12) we see that if (Ti)~ is an invariant 

tensor, Ti must close a Lie algebra 

[T. , T. J 
l J 

(2.13) 

This is the only invariance condition of type (2. 4) used in Cartan' s 

analysis. At this point Cartan chooses T. of canonical form whose 
l 

syrmnetry properties make it possible to determine all solutions of 

(2.13). This classifies all semisimple complex Lie algebras, but it 

does not tell us which particular algebra preserves a given set of 

primitive invariants. 

Before returning to this problem, let us make several observations 

which will be useful later. The quadratic form Tr(Ti Tj) is syrmnetric 
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and real, so it can be diagonalized. With this redefinition the 

diagonal entries of T.t- CT. T. ) are non vanishing because of the 
]. J 

independence of T. and positive because T. are hermitian. Hence 
]. ]. 

it is always possible to choose generatoI"S in (2,8) (this amounts to 

a rotation and rescaling of parameters E.) which satisfy a 
]. 

normalization condition 

Tr (T.T.) =a 8 .. 
. ]. J l.J 

(2.14) 

where a is an arbitrary positive constant. (In Cartan's approach~ is 

customarily fixed by choosing root vectors of some standard length) . 

With this normalization the structure constants Cijk are real, fully 

antisymmetric and computable fran Ti by tracing (2.13) with Tj: 

1 
i c .. k = - Tr [T.T.Tk - TkT.T.J (2.15) 

l.J a . l. J J l. 

Projectors. To clarify the relation between the generators Ti and 

the defining space invariants, consider an arbitrary hermitian matrix 

~ expanded in terms of the bases Ti 

N 
,.,a = L: m. CT.)~ + 7!3-
''b i=1 ]. ]. -b 

where Z is linearly independent of T .. 
]. 

Iefine a projector P with properties 

pee 
df 

pili 
ea = pcb 

da 

cb ( a pda Ti)b = (Ti)~ 

pcb ~ = 0 . 
da 

To compute m. in (2.16) use the projector 
]. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 



(2.20) 

and trace with (Tj)~ to obtain 

1 m. = - Tr(T. M) 
J. a i 

Substituting back into· (2.20) we have 

[Pcb - ,! (T.)c (T.)b J ~ = 0 
da a 1 d 1 a "b 

As this is true for arbitrary ~· the projector which projects out the 

subspace of [rum] hermitian matrices spann~d by bases Ti can be 

constructed flxlm the generators by 

1 = -a 
c b 

CT. )d CT.) 
i i a 

(2.21) 

That this is indeed the projector (2.9) can be seen by rewriting (2.8) 

using (2.14) 

c pd a 
: Ed Cb (2.22) 

c c where Ed= Ej(Tj)d can be replaced by an arbitrary infinitesimal hermitian 

matrix, because by (2.20) the extra parameters do not generate any 

additional transformations. 

Equation (2.21) establishes the connection between generator and 

projector descriptions of invariance groups, but it does not mean that 

in order to know P we must first construct Ti. P is a rrore fundamental 

object in the sense that if offers a rrore economical description of the 

invariance group; unlike T. construction, construction of P does not 
J. 

require introduction of an arbitrarily labelled auxilliary space A, 

and an arbitrary overall normalization ( 2. 14) . 

Projector P is itself an invariant tensor, and by primitiveness 

assumption ( 2. 6) it must be expressible as a. sum over tree contractions 

of primitives 
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(all independent 

contractions of other primitives with (2.23) 

the right index structure) 

Substituting this expansion back into (2.4) we obtain conditions on 

C and the primitives which often suffice to fully determine P and the 
m 

invariance algebra. 

The expansion ( 2. 2 3) is intimately related to the Clebsch-Gordon 

expansion of the Kronecker product Vim ii. The projector P projects 

out that part of V im ii which transforms as the adjoint representation 

(2.10) 

x '= a 
ob .!. x yC + .!. (T. )ab x (T. )de yd + •••• 
anc a J. cJ. 

As this is true for arl:litrary x, y the Clebsch-Gordon series can be 

written as a completeness relation for a sum of projection operators, 

one for each irreducible representation of V im ii (we reserve the term 

"projector" for the projection operator for the adjoint representation); 

~o~ = ~ o~o~ + P~ + ..• (2.24) 

The first term projects out the singlet, the second the adjoint 

representation and so forth, and the number of terms equals the number 

of independent tree invariants with the right index structure. 

Expansion (2.24) is a special case of a general Vim V ••• imiiimiiim 

Kronecker product jecomposition (indices suppressed) 

(2.25) 

if It ;iµ 

where It distinguishes different irreducible representations. With 

this in mind we can generalize the notion of invariant tensor (2.1) 
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to tensors with many different kinds of indices , each kind being a 

shorthand notation for some projection operator in ( 2. 2 5) • For example, 

consider (2.1) enlarged to 

a •. b 
g = c .• d, i..j 

a, .. d 
i, .. j 

= 1,2, .. n 
= 1,2, .. N, 

The adjoint representation indices i, •• j are a shorthand for 

projectors applied to an l.ll'lderlying defining space invariant: 

(2.26) 

In this sense we shall often use generator T. as a shorthand for the 
l 

projector P: 
a e ag _h,, 

(T.) (T.)f =a pch p--;:f 
l c l g 

without ever attempting an explicit construction of Ti. 

Invariant polynomial (2.3) corresponding to (2.26) includes elements 

of the auxiliary space A of ( 2 .10) , and the invariance condition ( 2. 4) 

now includes the adjoint representation derivations (2.11): 

D.k::; £. (C.).k 
J l l J 

Lie algebra (2.13) is simply the invariance condition for P(x,y,Z) = 

a b CT. )b x y Z. , and similarly Jacobi relation is the invariance 
i a i 

condition for cijk" 

the invariance of Eta. 
Lie algebra is an automatic consequence of 

As the generalized invariants (2.26) are only a shorthand notation 

for defining space invariants contracted with some projection operators, 

the primitiveness assumption applies to generalized invariants as well: 

one merely contracts both sides of ( 2. 6) with the same projection operators. 

By contracting we can turn expansion (2.6) into a set of linear 

equations 

W1 = c tmn 
m 

(2.27) 
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Where trm = Tt(m). T(n)' vf' = Tt(m). W are scalar invariants fanned 

by contracting all pairs of corresponding indices 

= Tt d .• c if• .b 
j .. i, b •. a c .• d, i..j (2.28) 

Tree invariants T(m) are generally not independent, and the summation 

. (2 6) b tr' d b . T(l) (S) f m . can e res icte to some asis set , ..• , T or 

which det (trm) i. 0. This enables us to compute C in (2.6). In this 
m 

way study of invariance .3.J.gebras reduce:;; to study of scalar invariants. 

By means of projection operators (2.23), (2.25) a generalized scalar 

invariant can be written as a sum over scalar invariants composed only 

of primitives. The primitiveness assumption guarantees that every such 

scalar invariant is computable. Suppose that the scalar invariant 

C is connected and contains Jl loops of contractions. We can always 

separate out a one-loop sub-invariant W 

c = if· .b vd· .c 
c .• d b •• a 

and reduce W by ( 2. 6) to a sum over tree invariants T(m) . By this 

process of rewriting each C as a sum of scalar invariants of Jl-1 or 

less loops we can reduce any scalar invariant to a polynomial in 

oa = n, the dimension of the defining space. 
a 

To illustrate the importance of scalar invariants, let us 

consider few simple examples. One trivial scalar invariant is the 

dimension of the defining space, a 
cS = m. a First non-trivial scalar 

invariant is the dimension of the invariance algebra, o .. = N. This - ].]. 

positive integer is computed from the projector by 

N = o .. = o .. o .. = o .. l (T.)a (T.)b = pab 
ii l.J Jl. l.J a J b i a ba 

(2.29) 
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The cl:imension of any representation in ( 2. 2 5) can be similarly 

computed f:n::im the corresponding projection operator. Another 
. . . 22-24,12,13 

important scalar invariant is t, the index of the defining representation 

Tr (T.T.) 
J l = ---'---

· Tr(C.C.) 
' J J 

(2.30) 

t-1 turns out to be an integer for the iowest cl:imensional representations 

of all simple Lie algebras. As will be shown in the next section, t 

can be expressed in ternis of projectors as 

P
ac _hi! 
bd ir.;;: (2.31) 

By he:rmi tici ty of T. , t is real and positive. For· simple Lie algebras 
i 

nornialized by (2.14), the index is related to the cartan-Killing metric 

-1 Tr (C.C.) = t ac .. 
i J i] 

(2.32) 

Hc:Mever, converse is not true; even if the explicit evaluation of 

Cartarr Killing metric for sane invarianoe algebra yields ( 2. 3 2) , 

this is no guarantee that the algebra is simple. I do not know hc:M to 

fomulate the simplicity criterion in ternis of projectors P. 

3. DIAGRAMMATIC NOTATION 

Relations l:iJ<e the invariance condition (2.4) can be quite 

cumbersome, especially if in addition one has to symmetrize various 

subsets of indioes. The standard way of avoiding a proliferation of 

indioes and incorporating symmetries is by defining the invariants 

(2.3) as abstract products. For example, instead of tensorial 

. . t. . . ,a b - .a dabc . d rod t prl.IDl. ive invariants ub xay , z = ~y c, one intro uces p uc s 

Cy ,x) , z = X•Y and demands invarianoe of a symmetric trilinear fom 

-x,y, z> = (Xoy, z): 

<Dx,y,z> +· <x,Dy,z> + <x,y,Dz> = 0 ( 3 .1) 



We shall give some examples of this notation later. In the 

present context an abstract prcduct notation would entail 

too many kinds of dots and brackets , and to treat all invariance 

algebras in a unified manner it will be most convenient to stick to 

the tensor notation. It should be emphasized that all the relations 

studied here are coordinate independent, and tensorial indices have 

only formal meaning, indicating what representations appear in an 

invariant, and what summations are to _be performed (see the nice 

di . f . . . b p 25) scussion o tensor invariants given y enrose • We explcit 

this coordinate independence of tensorial equations by introducing a 

label-free diagramnatic notation. In this notation the tensor 

invariants of the preceding Section are written as 

ca 
b b-+-O. ( 3. 2) 

Q .. 
i] t-;-j ( 3. 3) 

(T. )b 
i a 

L 

a~h (3.4) 

-i cijk ~~ (3.5) 

( here indices are read counterclockwise, and the 

skew symmetry is built in by 

1 :x: (3.6) a 

Clebsch-Gordon series: 

t ~ 
1 ..., 

= n /4\ + ~~ + ( 3. 7) 

Dimension of the defining space: n = 0 ( 3. 8) 

Dimension of the invariance algebra: N =0= ~ <P (3. 9) 

···1·.·.· . 
.. 

' 
·~ 
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As we shall consider only two types of primitives beyond 6~, it 

will be convenient to introduce special diagrarrunatic notation for them. 

Fully symmetric primitives d will be denoted by 

d: dabc .. f = d bac .. f = d bca .. f _ .•• 

=RA =fA = (3.10) 
ADC .} 

and the fully antisymmetric primitives f by 

f: ~c .. d = _ f bac .. a = f bca .• d = ••• 

(3.11) 

Without fear of confusion we can suppress the dagger notation for 

their duals: 

= f d •• cba 

We have used a semicircle in (3.11) because even rank f's are not 

cyclic 

~cd = _ ~cda (3.12) 

The odd rank f's are cyclically symmetric and for them we do not 

have to distinguish between the first and the last index: 

~c .. d = 11f\ 
b.bc.d 

(odd ranks only) (3.13) 

We shall also find it convenient to introduce a special notation for 

f of rank two 

(3.14) 

I 

1 
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Even though in the above definitions we have labelled the lines, 

indices can always be omitted. An internal line signifies a suimnation 

over the corresponding indices, and for the external lines the 

equivalent points on the paper represent the same index in all terms 

of a diagrarnnatic equation. Consider an arbitrary tensor invariant 

of form (2.26) kji 

abc d.).U....fi < 3 .15 l 
gde, ijk = e~a 

(legs are always indexed counterclockwise) 

The invariance condition (2.4) is expressed diagrammatically as 

O= + 
(3.16) 

+ 

This is the most general form of the invariance condition; the tensor 

denoted by the box can be a primitive, or a complicated composite 

tensor. For example, Lie algebra (2.13) follows from the invariance 

of 

( 3 .17) 

and the Jacobi identity from the invariance of 

o = X. t A (3.18) 
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The normalization (2.14) is diagrarnrnatically 

-()--a- (3.19) 

Note that (3.17) fixes the sign convention for c .. k, and that if the 
l] 

arrows were reversed, the right-hand side -would change sign. The 

diagrammatic version of the definition (2.15) of c .. k is 
l] 

(3.20) 

It is always sufficient to indic:;ate the direction of a line by a 

single arrow, and the remaining inessential arrows can be omitted. 

Note also that the dual tensor gt in (2.1) is obtained by flipping 

over the diagram for g and reversing the arrows on all directed lines. 

To illustrate how one computes with diagrammatic equations , we 

shall derive (2.31). Use (3.20) and (3.17) to obtain 

~K: P-<-,k 
- 'fj_-'Pfi-~+~ 

and substitute this into (2.30) 

-1 
t = 

e 
e 

2 
= Na._ ( g ©) 

(3.21) 
I 
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Noting that u = a ~•,we have (2.31); 

-1 2N 2 ~ (3.22) Q, = -- --2 n Na 

Very convenient tools forr the study of Kronecker products and 

invariants with syrmnetries are syrmnetrization and antisyrmnetrization 

operators defined recursively by 

~ - ~[I~+~+~+···] 
12.3 "' 

(3.23) 

(3.24) 

For example, 

(3.25) 

The factor in front counts the number of distinct permutations and 

insures idempotency 

(3. 26) 

) 

These operators generate the syrmnetric group, and give a diagrammatic 

version of syrmnetrizations and antisyrmnetrizations which build up 
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26 27 Yo\.Il1g operators ' As a trivial example,consider the Young tableaux 

decomposition of a Kronecker product tJ<lDO = 3 +ID , 

given by 

(3.27) 

Another convenient diagrarrunatic tool are operators which we 

introduce by a simple example. Suppose we "want to antisynmetrize 

(3.15) in~ and£ indices, and contract j and i indices. 'This is 

accomplished by the operator 

• 
• 

. () 
• 

~ 
which we apply to (3.15) by superimposing it over corresponding legs: 

We conclude this discussion of diagrarrunatic notation by an 

. 1 . . . p 19 ,26 il urrunating observation due to enrose • SO( 3) invariance 

algebra has primitives 8 • . and e .. l<, and in the diagrarrunatic notation 
l] l] 

all scalar invariants are closed cubic graphs. For planar graphs 

the value of the corresponding scalar invariant turns out to be the 

number of ways of colouring the lines of the graph with the three 

colours meeting at each vertex. In general an invariance algebra can 

be interpreted as a "colouring rule" which assigns a cambinator:ial weight 

to a given diagram. 'This is precisely the role played by internal 

synmetry groups in physics - there the associated Lie algebra factors 

co\.Il1t the number of degenerate states contributing to a given process. 

i~.:i·· .. ··.· 
- :-'ij! 

'

}"! 

I 
I 
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In this context it is quite conventional to describe the invariiance 

algebra in terms of projectors rather than generators. In generator 

fornalism a Yang-Mills theory with massive quariks of n colours and N 

massless gluons is defined by the classical Lagrangian density 

(3.28) 

In the projector formulation one replaces AY(T. )b by Av : Abv (x). This 
i i a a 

is an element of the invariiance algebra obtained from an aribitrary [nxnJ 

" v "v hermitian operator matrix Av by A = PA . Now the Lagrangian density 

is given by 

(3.29) 

and the projectors P appeari as the group theory factors in gluon 

propagators 

µ ~ ~e c~ ("f-.1< "'fY > <At Cx), A4 CJ)>::: Pbf P&~ Ae 6:), Ari (J) 

- P: 4 Dµv(:x.-.J) (3.30) 
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For example, 't H f 
35 . 

oo t uses proJector (5.5) for U(n) algebra, Callan, 

Coote and Gross 36 use (5.6) for SU(n) (the above even in the diagramnatic 

notation) and Oleng, Eichten and Li 37 use (9.13) for SO(n). 
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4. CONSTRUCTION OF INVARIANCE ALGEBFAS 

I shall construct the projectors for various invariance 

algebras by the following sequence of steps: 

(i) state the primitives and the relevant consequences of the 

primitiveness assunption. 

(ii) list all basis tensors that can appear in the projector 

expansion and explore possible relations between them. 

(iii) for each of the above possibilities, substitute the projector 

expansion into the invariance condition 

- 0 0 (4.1) 

' 
and find all solutions. 

(iv) compute the overall normalization of the projector from the 

normalization condition 

1 
a 

(v) to identify the algebra, compute its dimension 

(4.2) 
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( 4. 3) 

and 

(iv) the index of the defining representation 

_, 
e = e 

e 
2N 
n 

(4.4) 

Representations will be identified by Cartan's classification as B1(3), 

A2(8), F4(26), F4(52), .... ,where the number in the brackets is !l• the 

dimension of the defining vector space (for consistenC)l the number !l 

in SU(n) ,SO(n) and Sp (n) refers to the dimension of the defining vector 

space, at variance with the conventional notation Sp(I)). Different 

representations of same dimension are distinguished by their index, 

except for the trivial case of cogredierit-contragredierit pairS. 

5. cf5 INVARIANCE + U(n), SU(n) 

(i) primitives: only -+- • 

(ii) projector bases: (5.1) 

Suppose that they are not independent: 

o=).1 +b~ (5.2) 

Contracting with ( : 
• • 

and we get 0 = n + b and 0 = 1 + n b, 

with an unacceptable solution n = - 1, and a trivial solution n = 1. 
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Hence the tensors (5.1) are always independent. 

form 

The projector is of 

(5.3) 

(iii)- the invariance condition (2.5) is already built into the 

formalism, i.e. Ti are hermitian, and c9nsequently A and b are real. 

(iv) the normalization condition ( 4. 2) yields 

(5.4) 

with two solutions: 

Case 1. A = 1, b = O. The projector is given by 

U(n) algebra (5.5) 

Case 2. A = 1, Tr(T. ) = 0. This additional tracelessness condition 
J. 

substituted back into (5. 3) yields b = 1, and the projector is 
n 

~A=><-~A SU(n) 

= An-1(n) 

(v) algebra dimension 

Case 1. N = 00 = n(I.. 

Case 2. N = G0-~0 ::: h2.- l 

(5.6) 

(5.7) 

(5.8) 
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(vi) index 

Case 1. U(n) is not semisirnple: 

~ -0- = Z.n - - 2. --0 G- (5.9) 

l;lut all scalar invariants are still computable. In our definition 

( 4. 4) index is a ratio of scalar invariants and therefore computable: 

Case 2. 

2 
l'.-1= 2Cn -1) 

n 
(5.10) 

(5.11) 

Comnent Relation (5.6) is a reduction algorithm in the sense that it 

rewrites a scalar invariant with k loops as a sum of two scalar 

invariants with (k-1) loops. It is also a Clebsch-Gordon series in the 

sense that V Ill! V = tf is written as a sum of a singlet -k" ;( 
and the adjoint representation ~A 

6. oB, ~ INVARIANCE-+- SU(2), Sp(n) 

(i) primitives (6.1) 

Primitiveness assumption requires 

(6.2) 
~ =o<. ..... ) 

(usually a = 1) 

f ab has an inverse .! fb if det ( -F • ) ~ 0 , so it can be realized only 
Cl c "'ab 

in even-dimensional spaces; n is even. 

(ii) projector bases )-L 't' ~J' 
~ ,~, ~. 

Two possibilities arise: 

(6.3) 

Case 1. The above bases are not independent. Taking into account ~ 

antisymnetry, the most general relation is of form 



31. 

(6. 4) 

Contracting with ~ and '( : 

with n = 2 as the only solution: 

n-1 
we get o = n - b and o = - 1+~ , 

~~ =}(-X 
" ' (6.5) 

so :(3b is proportional to l.evi-Civita tensor in two dimensions. The 

projector is of form 

(6.6) 

Case 2. Bases ( 6 . 3) are assumed independent: 

~x = A(t(-r1~ +~ x) (6. 7) 

(iii) invariance condition: 

Case 1. 

' 
Yl = 2.. (6. 8) 

Contracting with cab, or from (6.5) we findb = - ~ .. 

Note that this makes T. traceless (i.e. from ( 6. 6) G-< = 0 ) 
1 

Case 2. 

(6.9) 
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By assumption the above tensors are independent, hence c = 1, b = 0. 

Note that T. is again traceless. 
l 

(iv) nonnalization: 

Case 1. 

_j_ - A(_J_ - ~ .i) 
As T. is traceless , A = 1, and the projector is 

l 

Case 2. The invariance of~' (3. 16) gives 

SU(2) = A1(2) 

which reduces the second term in the nornialization condition 

so that A = ~' and the projector is 

J_~=-')f Sp(n) = C n (n) G\. C( 2 

(v) algebra dimensions 

Case 1. N = 3 

Case 2. N = n(n+1) 
2 

(vi) index 

Case 1. 
-1 4 Q, = 

Case 2. -1 n+2 Q, = 

(6.10) 

( 6 .11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 
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Comnent SU(2) = Sp(2), because by (6.5) the two projection 

operators are equivalent in n = 2 dimensions. 

7. o~,~c INVARIANCE + SU( 3) 

(i) primitives ...... , A (7.1) 

By primitiveness assumption 

) (7.2) 

(usually a = 1). :(ilic obey a pure antisymmetry relation 

0 (7. 3) 

' 
from which follow relations 

( 7. 4) 

~o 

0 (7.5) 

(ii) projector bases: (7.6) 

Two possibilities arise 

Case 1. The above bases are not independent. 

I (7.7) -o<.. 
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Substituting this into (7.5) we obtain 

( 7. 8) 

'Ihis is equivalent to (7.7), as can be seen by expanding 

(7. 9) 

Still another equivalent relation is obtained by expanding 

(7.10) 

Contracting (7. 7)with +(: : yields A = 1 • 

• • 
Contracting (7. 7) with ~ yields n = 3, hence the relation (7. 7) 

can be realized only in three dimensions, and ~c is proportional to 

1.evi-Civita tensor 

(7.11) 

'Ihe projector is of form 

(7.12) 
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Case 2. Bases (7.5) are assumed independent: 

(7.13) 

(iii) invariance condition 

o==#r+b,1\ (7 .14) Case 1. 

' Contracting with A we obtain b = - + . 
• • • 

Case 2. 

(7 .15) 

Antisymmetrize all out lines and use (7.5) to obtain 

0 = (1-b) ~ (7.16) 

By assumption the tensor is non-vanishing, because otherwise by ( 7. 8) 

this case would reduce to Case 1. Hence b = 1. Now resymmetrize indices 

of (7.15) by applying ~~ : 

(7.17) 

By expanding the third term and by ( 7. 4) we obtain a reduction relation 

f ch . f abc . or a a.Jn o three f contract~ons: 

( 7 .18) 
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•• 
This reduces, by contraction with y • • to a relation of form 

( 7. 7) , hence Case 2, again reduces to Case 1, and the pr:i.mi ti ves set 

(7.1) must satisfy (7.11). 

Case 3. The antisymmetry relations (7. 4)and (7. 5) were the key to the 

unique n = 3 solution. For pedagogical reasons, to illustrate the type 

of solution I will later obtain for exceptional groups, I shall show 

what would have happened if I have missed the relation (7 .18). From ,._, 
(7.16) b = 1, and contracting (7.15) with ••• obtain c = -n-1. 

T. is now traceless. 
l 

(iv) normalization: 

Case 1. As in (5.4), A= 1. 

}(-JX 
' 

l\=3 

Case 3. From the invariance ( 3. 16) of :f3bc 

0 =: 

Contracting with :f3bc obtain 

() -

SU(3) = ~(3) 

Hence the third term in the normalization condition is reducible 

( 7 .19) 

(7.20) 

(7.21) 

1 
I 

I 



r 

I 
37. 

j_ 

yielding A= ~+3 , and the projector 

+A- 2.. 

h+3 (><+X 
Note that this consistent with (7.11) and (7.19) for n = 3. 

(v) algebra dimension 

Case 1. 

Case 3. 

N = 8 

I ft\ _ .1:_. (A Ao. + ~ _ I+·"" 1\...4.1'\) 
N = a\4-1 - h+3 UV \...I o<. ~ 

= t+(n-2) + ~ 
n+3 

(vi) index 

Case 1. 

Case 3. 

Q,-1 = 6 

Q,-1 = 2 3n2+22n+15 

(n+3) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

Comment The algebra dimension N must be an integer. This turns the 

"partial ignorance" result (7.25) into a Diophantine equation with only 

four solutions (trivial n = 1 is not realizable, because ~c can be 

constructed only in n;. 3 dimensions) 
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' 
n r-3- 5 9 21 

N 8 15 30 77 (7.28) 

Q, 
-1 

6 

"Partial ignorance" is already sufficient to sharply limit the number 

of n-dimensional spaces which could possibly accorrmodate primitives ( 7 .1). 

The n=3 solution in the above list is trivial to construct, because any 

fully antisymmetric tensor of rank n in n dimensions i~ proportional 

to Levi-Civita tensor. The defining relation for Levi-Civita tensor, 

(7.8) and (8.6) for general n, states that no object antisymmetric in 

(n+l) indices can be constructed in n dimensions. However, note that I would 

have not known how to discard the. rest of (7. 28) if I had missed the 

relation (7 .18) • 

8. a 
ob, fabc ... d INVARIANCE -+ SU(n) 

(i) primitives: --4- ~ • 
' rt··~ ) 

r::>3. (8.1) 

·~·· ... 
A fully antisymmetric object can be realized only in n ) r dimensions. 

By primitiveness assumption 

= 2a; 
n-1 

(8.2) 

etc. (8.3) 

i.e., various contractions of fab .•• d must be expressable in terms of 

al5, otherwise there would exist additional primitives. 

(ii) projector bases: }(,~. (8.1+) 

, 
I 
' 
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According to (5.2) they cannot be related, so the projector is of form 

(5.3). 

(iii) invarianoe condition 

o~ ~~ + b II\ 
~ ff .. + 

( 8. 5) 

contracting from the top get 0 = 1+bn. Antisyrnmetrizing all out legs 

get 

0 = 1 ~ (8.6) 

+ff+ 
and contracting with 8~ from the side get 0 = n-r. As in the preoeding 

Sections, (8.6) defines Levi-Civita tensor inn dimensions, and can 

be rewritten as 

(8.7) 

(Conventional Levi-Civita normalization is na = n!) 

'Ihe above solution b = - .! makes T. traoeless, and it is the same as 
n i 

the Case 2 ocnsidered in Sec.5. To summarize: the invariance condition 

forces fabc ... d to be proportional to Levi-Civita tensor (essentially 

because in n dimensions Levi-Civita is the only fully antisyrmnetric tensor 

of rank n), and the primitives cS!5. fab ... d(rank n) have SU(n) as their 

unique invarianoe algebra. 
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9. 8~, dab INVARIANCE -+ SO(n) 

(i) primitives -+- ) -•• .. oo-t',_ (9.1) 

By primitiveness assumption 

(9.2) 

(usually a = 1 ) 

(ii) projector bases t(,X,)(. (9.3) 

Suppose that the above bases were not independent 

(9.4) 

• • 
and C : we obtain 0 = 1 + nA and Contracting with V 

n+1 0 = - 2- +A, with an unacceptable solution n = - 2 and a trivial 

solution n = 1. Hence the bases C 9. 3) are always ·independent. The 

projector is of form 

(9.5) 

(iii) invariance condition: 

(9.6) 

The only solution is b = O, c = - 1. 
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(iv) normalization: ab The invariance of d , (4.1) gives 

(9.7) 

which reduces the second te:nn in the no:nnalization condition 

(9.8) 

so that A= ~' and the projector is 

= B 1 (n), n odd n-
T 

SO(n) (9.9) 

= D (n)' n even n 
2 

(v) algebra dimension N = n(n-1) (9.10) 
2 

(vi) index -1 2 (9.11) t = n -

hence semisimple only for n > 2. 

Carrment By rotating and rescaling the defining vector space V it is 

always possible to bring dab to fo:nn 8ab. In this case Xa = Xa' the 

representation is real, and there is no distinction between 815, 8ab and 8ab. 

In the future I shall always replace 8~, dab primitives by cSab' omit 

line arrows, and replace (9.7) and (9.9) by 

(9.12) 

(9.13) 
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By (9.12),for real representations projector bases are antisymnetric. 

ob dabc INVARIANCE + E6(27), 
a' 10. 

(i) primitives: -+-.) A (10 .1) 

By primitiveness assumption 

) (10. 2) 

(ii) projector bases: (10.3) 

Suppose that the above bases were not independent 

O= ~}+-<+A~ (10.4) 

Contracting with --+{ : and • • we obtain as the only solution 

the trivial n = 1. Hence the bases (10.3) must be assumed independent, 

and the projector is of form 

(10.5) 

(iii) invariance condition 

+~ 
(10.6) 

Resymnetrize with to obtain 

(10.7) 
J 

j 
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Subtracting from (10.6) we get 

Suppose 

0 =-

Contracting with ••• 
1 

we get a trivial solution n = 1. 
~ 

Hence 

n+3 b = 3 , and contracting (10.6) with 
• • • 

we get c =--3-· 

(10. 8) 

(10.9) 

This 

result is written more canpactly by syrrmetrizing all ou:t legs on (10.6) 

4«. 
h+3 Springer's relation (10.10) 

By Springer's relation one of 3 possible chains of 3 dabc contractions 

(10.11) 

can be eliminated. Note that a single 3-dabc chain cannot be reducible. 

If it were, by syrrrnetcy the reduction relation should be of form 

(10.12) 
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• 
but upon contraction with y • • this reduces to (10.4), and hence 

can be realized only for the trivial n = 1 case. 

(iv) nonnalization 

(10.13) 

As ID C7. 21) , the third term is reducible, A = n ~g and the projector 

is given by 

+ ~ - _§_ 
u A n+'I 

(v) algebra dimension 

(iv) index 

4n(n-1) N =-.,...-~ n+9 

-1 n-3 
.R. = 6 n+9 

(10.14) 

(10.15) 

(10.16) 

Comments The solutions to the Diophantine equation C 10 .15) are listed 

in the Table I. To restrict them ton.;;. 27, we use (10.14) to 

compute 

= 
(1'1-t-1)(2.1-1'1) 

(1'1-t-'l )~ J_ (10.17) 



Iefine a fully symnetric tensor 

~ 
ij K 
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d. 'k. 
l] . 

By hermiticity of T., d .. k is real, and 
l l] 

2 
(d .. k) ~ 0 

l] 

But from (10.17) this equals 

a 3 (n+1)(27-n) N 

2 (n+9) 2 

(10.18) 

(10.19) 

(10.20) 

hence n is restricted to n ,;. 27. This restricts the solutions of the 

Diophantine equation (10.15) to six, four of which are identifiable. I 

presume I can construct the first three CA2 , A
2 

+ A
2 

and A
5

) , in the 

manner I shall construct a related set of algebras in Sec.15. I do not 

know how to e lilninate n = 11 and n = 21 solutions, and for the 

remaining E6 C27) I lack a full reduction algorithm which would enable 

me to compute any scalar invariant built from dabc constructions. 

However, the scalar invariants I cannot compute are of very high order, 

as their shortest loop must be of length eight or longer. 

Springer's relation ( 10 .10) enables me to reduce loops of length four 

~· ):( = .; ... , (- •;;.X, + )( + x) (10.21) 

and the fact that for E
6

. (27) d .. k = 0 by (10.20) implies that 
l] 

' 
n = 27 (10.22) 
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Lie algebra (3 ,17) now gives a relation between projectors 

Substituting (10.14) we get on the left hand side a term of form 

but the right hand side consists only of tree;without loops. Hence 

(10.23) reduces loops of length six. 

I 
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11. a 
ob, dabc •.. d INVARIANCE + NO REALIZATION 

Ci) primitives ....., , #).. r > 3. 
I 1. •·· r 

By primitiveness assumption 

= ol... ..... 

2a 'fW = n+l ..-f..l"fl. , etc. 

(ii) projector bases: )( J ~ , 

so the projector is given by (5.3). 

(iii) invariance condition 

o==-

(11.1) 

( 11. 2) 

(11. 3) 

(11. 4) 

(11. 5) 

Contracting from the top get b = - 2:.. Symmetrizing all out legs get 
n 

(ignoring the trivial n = 1 solution) 

0:. ~ (11.6) 

a Contracting with ob get 0 = n+r, with no acceptable solution. Hence 

there do not exist non-trivial Lie algebras which preserve the primitives 

set (11.1). 
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12. Gab' fab INVARIANCE -+ 80(2) 

(i) primitives -, (12.1) 

Here we have replaced G~, dab primitives by Gab' as in Sec.9, and 

the invariance algebra has to be a subalgebra of SO (n) • Furthermore, 

fab is nornalized as in Sec.6, and the invariance algebra must also be 

a subalgebra of Sp(n), n even. 

(ii) projector bases: (12.2) 

(they have to be antisyrronetric by ( 9 .12)) • The projector is of form 

(12.3) 

(iii) invariance condition 

(12.4) 

Antisyrronetrizing in three lets get 

(12.5) 
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This is just (8.6) for r = 2 case, and as before, one obtains (6.5) 

(that the lines are now not directed does not affect the derivation). 

Hence the second term in (12.3) is reducible, and the algebra is S0(2) of 

Sec. 9, with dimension N = 1, and index ~-1 = 0. 

13. cab' fabc INVARIANCE+ S0(3), G2(7) 

(i) primitives - ) A . 
By primitive~ess assumption 

-0- = a. ...... ,a. > 0 # 

A 
(13.2) 

(13.3) 

(usually a=1 ). As there is no distinction between out-legs and in-legs, 

fabc satisfies, beyond relations (7.3) to (7.5), an additional 

symmetry relation 

= 0 (13.4) 

(ii) projector bases: (13.5) 

(they have to be antisymmetric by (9.12)). There are three possibilities: 

Case 1. K=A~ (13.6) 

As in ( 7. 7 )' this means that f abc is proportional to Levi-Ci vi ta tensor in 

three dimensions, A :: 1, n = 3. The projector is of form 

(13.7) 
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'Case 2. 

Antisymnetrizing in ~e legs get 

0 = (1+B) ~ 
This leads to two possibilities 

Case 2.1 fabc obey Jacobi relation(3.18 ). 

relation back into (13.8) we have 

(1~)>-< =A~ 

(13.8) 

(13.9) 

Substituting Jacobi 

(13.10) 

Hence., if we assume any relation of form (13. 8) beyond Jacobi relation 

( B = 2 , A = 0) , this case reduces to Case 1. It is quite clear that the 

primitives set (13.1), where fabc obey Jacobi identity (i.e., f abc are structure 

constants) has only one realization, 80(3) = B1(3) = A
1
(3), but I have 

not been able to prove this fI'OIJl the primitiveness asslllllption. 

Case 2.2 fabc do not obey Jacobi relation: B = -1, and (13. 7) becomes 

)-{ + J( ""Ac(,% c13.11) 
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By symmetriz:ing the two top l:ines , this can be rewritten as 

alternativity 
relation 

Alternativity relation is equivalent to a reduction relation for 

three-cha:ins derivable from it 

= + ~ +A~( ~ -~ ) 

:-~+h~(~-~+4) 

(13.12) 

: ~(-~+~)+Ac{(~-~+~~) 
(second term vanishes by (7.4)) 

Contracting (13.12) with cab we get A -n=i· 

Antisynmetrizing (13.13) we obta:in 

(13.13) 
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(13.14) 

which, contracted with . .. . yields n = 7 • To summarize, if fabc do 

not obey the Jacobi relation, a relation of form (13.8) is realized 

only inn = 7 dimensions, and fabc satisfy 

>-<+A - ~ (2.X-)C-X) 

which implies the reduction identity 

alternativity 

n = 7 

A ~(k-zJvr+Jrj 
n = 7 

-

The projector is of form 

~ ::( - A(+(a+~X), 7 n = 

(13.15) 

(13.16) 

(13.17) 



Case 3. Bases (13.5) are assumed :independent: 

(iii) :invarianee condition 

Case 1. 

0 =IA. n = 3 

' 
This is equivalent to ( 7. 8), so fabc is proportional to 3-dimensional 

l.evi-Civita tensor. 

Case 2. 2 

Contracting with 

Case 3. 

A 
••• we get b = -1. 

(13.21) 
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We assume that the Jacobi relation does not hold, otherwise this 

reduces to the Case 1. Now resymnetrize (13.21) with .;:J 
and obtain, using (13.4) 

Adding (13.21) yields 

This leads to two possibilities. 

Case 3.1 b = - c. Substituting this into (13.21) and (13.22) and 

subtracting yields (13.19), hence this Case reduces to Case 1. 

Case 3.2 

Compute 6 from ( 13. 3) by contracting with ••• 

6 = - ~ 

(13.22) 

(13.23) 

(13.24) 

(13.25) 
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Substituting (13.24) back into (13.21) get 

o=i+ b-~ o( 

•• c and, as for (13.20), b - 2 = - L Contracting with y • get 

(13.26) 

(13.27) 

which is just (13. 11). Hence the invariance condition reduces Case 3 

to either Case 1 or Case 2. 

(iv) normalization 

Case L .J_ = A A A = 1 (13. 28) 

The projector is 

(13.29) 

Case 2.2. 

(13. 30) 
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Noting that ~ = 0, get A = 1, so 

(v) algebra dimension 

Case 1. N = 3 

Case 2.2 N = 00- ~ (I)= 14 

(vi) index 

Case 1. 

Case 2.2 

Comments. 

Jl = 1 

Jl-1 = 4 

As will be shown in Sec. 19. the proof that the 

relation (13.8) has only two non-trivial realizations, .three 

(13.31) 

(13.32) 

(13.33) 

(13.34) 

(13.35) 

dimensional (13.6) or seven dimensional (13.15),is a simple proof of 

Hurwitz's theorem. I have in addition almost proven that the 

primitives (13.1) have only two invariance algebras, 80(3) and G
2

C7); 

I have only failed to prove from primitiveness ass\.l!IlPtion that 80(3) 

is the only solution =npatible with Jacobi relation. Let me ·illustrate 

h<M' far primitiveness assumption takes me - this might shed same light 

on the shortcomings of ll\Y approach in cases of other exceptional 

Lie algebras. Primitiveness assumption means that all loops have to be 

expressible as S\.IIIlS over trees, i.e. 

-0-
A 
):( 

= - Ca= 1 nonnalization) 

= ~A (by Jacobi relation) 

= A{)(+ X} + BX + 

(13.36) 

(13.37) 

' i 

! 

I 
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4 D ( T + .Jf. T ~ + >r + ..\C.) = 

( ~ *~ +-¥- +-¥-- i" Jf) 1-E 

+F ( l,L + :::/-- + >1-- -t ~ + ~) (13.38) 

+G (.+ + .>1-t~+~ i' ~) 

where I have exploited rotational and flip synnnetries of the four-

and five-loops. Various contractions and Jacobi relations yield 

A= B = 
5 1 " 5 1 1 

---,C=s,D=E= ,F=20,G=50 
6(n+2) 12(n+2) 

but I have not been able to find a further condition that would fix 

n = 3. However, we know that there is only one algebra of Cartan rank 

1; B1 = Ai, and no other algebra has expansions of form (13. 37), 

(13.38). For example, using (9.13) we can compute for the adjoint 

representation of SO(n) 

~ = (ri-s) ~ + ~ +) ( + X + X + )--\ (13.39) 

This is compatible with (13. 37) only for n = 3.In general the adjoint 

representation of any algebra has higher primitive invariants, such 

= (13.40) 

ijk,Q, 

For sufficiently high rank these are reducible by the characteristic 

equation for [nxn] matrices (see Sec. 6 of Ref. 6), 
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~·· 

14. oab' fabcd INVARIANCE+ D2(6) = A1(3) + A1(3)+A1(3), G2(7) 

(i) primitives ....... , 17f\ (14.1) 

By primitiveness assumption 

(14.2) 

(14.3) 

(ii) projector bases (14.4) 

'Ihey are independent, as otherwise 

( 14. 5) 

antisymnetrized in all legs gives J7t\ = O. We shall consider two 

possibilities for the projector: 

Case 1. 

(14.6) 

Case 2. (14.7) 

(iii) invariance condition 

Case 1, O=~ (14.8) 
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Antisyrrrnetrizing in 4 legs we obtain ( 8. 6) , hence f abed is proportional 

to L.evi-Civita and n = 4. 

Case 2, (14. 9) 

'IWo pcssibilities arise: 

Case 2.1 if (14.8) holds both tensors vanish, leaving b midetermined 

n = 4 in this case. 

Case 2.2 Assume (14.8) does not hold. 

Contracting (14.9) with C: .. 

hence bC =-
n-4 

6 

+ 
ri-t 

8 

and •••• 

2 b 'f<i: 
n-1 ~ +bC~ 

Comparing with ( 14. 9) we have 

hence 

b = (n-1) (1+bC) 
2b 

fc10-n) (n-1) 
b+= .! /-' 12 

we obtain: 

(14.10) 

(14.11) 

(14.12) 

(14.13) 

(14.14) 



60. 

4-n 

C = : /3(10-n) (n-1) 

4 ;(. n, because no non-trivial fabcd exists in less than four 

dimensions. As P~ is hermitian, b is real and n :;. 10. n = 10 is 

excluded, because by hypothesis b -/. O. 

(iv) normalization 

Case 1 A = 1, and the projector is 

Case 2.1 n=4,b-/.0. 

Reduce the third term using ( 8. 7) ; 

There are two solutions: A = ~, b = : /-f, with projectors 

(14.15) 

(14.16) 

(14.17) 

(14.18) 

(14.19) 
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Case 2. 2 Reduce the third term in (14.17) using (14.3); 

Hence the projectors are 

(10-n)(n-1) 

12..o<. K) 
P (+) ,P (-) are "dual" and "anti-dual" projectors with respect to 

fabcd in the sense that 

3(n-1) 
c<. (to-n) 

(v) a1gebra dimension 

Case 1 N = 6 

Case 2.1 N = N = + 

N = N = + -
Case 2. 2 

(vi) index 

Case 1 t-1 = 2 

Case 2.1 -1 -1 
t+ = t 

3 

3n(n-1) 3n-45 4 2 
= - + 2 .3 .5 16-n 16-n 

= 2 

(14.20) 

(14.21) 

(14.22) 

(J.4. 23) 

(14.24) 

(14.25) 

(14.26) 

(14. 27) 
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Case 2. 2 ~ £ [ l!_ + b~ 60 J 
16-h 2. ~~ 

~ 16~h .[ ~ 
onb2. 

J 16-1\ 

-1 Q,-1 4(n+2) - 4 
+ 23.32 (14. 28) Q, + = = = 16-n 16-n 

Comments 

Case 2.1 The two projectors (14.19), (14.2o)are an explicit decomposition 

of the adjoint representation of the semisimple algebra D2(6) of Case 1 

into ~ ( 3) + ~ ( 3) . We list various properties (setting for simplicity 

a= a =a = 1 and using the Levi-Civita (8.7) nomalization a.= 6) + -

(14.29) 

(14.30) 

(14.31) 

as a shorthand for the corresponding projectors we have 

~ ~- -0 (14.32) 
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~J_ l 
~1--1. 

self-dual projection (14.33) 

anti-self-dual projection (14.34) 

Case 2.2 All solutions of the Diophantine equations (14.25) 

and (14. 28) are 

n 4 6 7 8 

N 3 9 14 21 (14,35) 
-1 2 4 10 JI, / 

A
1

C2). / G2C7) B
3
(8) 

The first co1Ullll1(Case 2 .1) corresponds to SU(2). n = 4 because 

complex 2-dimensional vectors are here represented by real 4-dimensional 

vectors •. 

G2C7) appears in this series because the primitive fal:ic of 
i; 

Sec. 13 can be replaced by its dual fabcd 

, n = 7, (14.36) 

where A is defined by (13.16) and is the seven dimensional 

Levi-Civita tensor fabcdefg)preserved by G2C7l because 

(14.37) 

(this can be obtained by expanding trivial identities like 
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n= 7 ) 

' 

From primitiveness asslU!lption for Sec. 13 primitives 

, n = 7 

where -0- - o(I-' ~ =o(~- • 

Squaring both sides we have 

(14.38) 

(14.39) 

Using ( 8. 7) we obtain A = .:/1
0

, It can be easily checked 

that (14.38) construction of fabcd is consistent with all above relations 

for Case 2.1 and that substituted in (14.21) it reduces the projector 

to (13. 31). 

I do not know how to eliminate n = 6 solution of (14.35), and 

have not checked whether n = 8 really corresponds to B3(8). 
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o f INVARIANCE -+ SO(n) ab' abc ... d 

(i) primitives -; tr\ ; r > 4 
• 2.·· r 

(14A.1) 

As in Sec. 8, various loop contractions of fab ... d must be reducible. 

(ii) projector basis: +fr 
The projector is simply SO(n) projector (9.13). 

(iii) invariance condition 

Antisyrnmetrizing in r legs we get (8.6), i:he defining equation for 

Levi-Civita in n = r dimensions. Hence i:he invariance condition 

forces fab d to be proportional to Levi-Civita tensor, and the c .. 

invariance algebra is SO(n) algebra of Sec.9; the volume (defined 

by sab ... d) is .automatically preserved if the length (defined by 

oab) is preserved. 

15. oab' dabc INVARIANCE-+ B1(5),A2(8),C3(14), F4(26) 

(i) primitives - , A . 
By primitiveness assumption 

.-() =O 

-0- - o<.- ' Cl > 0 

A =~A 
(usually a = 1 ) 

(14A.2) 

(14A. 3) 

(15.1) 

(15.2) 

(15.3) 

(15.4) 



66. 

(iii) projector bases (15.5) 

There are three possibilities: 

Case 1. 

(15.6) 

Contracting with -<: : 
I'"\ 

and get 0 = 1 + • • 

get A = 1. Contracting with ( : 

n+1 Bn and 1 = ~2~ + B, with solutions n = - 1,2. 

For n = 2 (15.6) becomes 

)\"' 2 (15.7) 

' 
The projector is of form (9.13), with n = 2. 

Case 2 

~}-{=A;:lK+B)(+ ~;rt( 
(15.8) 

Symmetrization in all legs yields 

l:_C ~ - (A+B) ~ (15.9) 

Neither of the tensors can vanish, because 

(15.10) 



leads upon contraction with v • • to n + 2 = 0 , and e = 0 

leads upon contraction with v • • to 2ci. = 0 , also unacceptable. 

The r€!Jlaining pcssibilities are 

Case 2.1 1-C=O,A+B=O 

(15.11) 

Contracting with c: get 1 = A( 1-n). Antisymnetrizing from the top 

obtain 

cl ---h-1 (15.12) 

The projector is of form (9.12). 

Case 2.2. 1 - C # O, A+ B # O, and (15.9) can be rewritten as 

Contracting with U • • 

dabc satisfy 

we obtain 2 = D(n+2), and in this case 

2.o<. 
n+2. 

characteristic 
equation 

Furthenrore, by contracting with 

we obtain 

(15.13) 

(15.14) 
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The projector is of form 

Jordan 
identity 

Case 3. Tensors )( 1X,X,k,X,~ 
are assumed independent. The projector is given by (15.16). 

(iii) invariance condition 

Cases 1 and 2.1 

0 = i 
contracting with c;. 
Case 2.2 

From (15.15) b = n+2 
4 

obtain 0 = n+1, no solution. 

(15.15) 

(15 .16) 

(15.17) 

(15.18) 

Case 3. The invariance condition is again ( 15 .18) , but lacking 

analogue of (15.15) I do not knoo how to continue. The primitiveness 

asslllllption has to be complemented by a characteristic equation of type 

(15.14) to fix the algebra. A nice example is given by the adjoint 
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representation of SU(m) which has primitives (15.1) for any n 

(taking n = N = m2 - 1 dimensional representation as defining), 

but (15 .14) is satisfied only for m = 3. This is discussed in the 

Appendix B of Fef. 6 , 

(iv) normalization 

Case 2. 2. As in ( 7. 2 0) , the second term in the normalization 

condition is reducible 

and the projector is given by 

(v) algebra, dimension 

(vi) index 

3n(n-2) 
N = --,-,-.­

n + 10 

i-1 _ 5n-22 
- n + 10 

(15.19) 

(15.20) 

(15.21) 

(15.22) 

Comments The 14 solutions of the Diophantine equation (15.21) are 

given in the Table 1. The four are identifiable and belong to the 

Freudenthal magic square - I shall now give their explicit 

construction (this is not in the spirit of this paper, but I include 

it as it might suggest ways of eliminating the remaining 10 pcssible 

solutions). Note that (15.15), which I shall later show to be equivalent 

to Jordan identity (the defining identity for Jordan algebras), was a 

trivial consequence of the "characteristic equation" (15.14). At 

this pcint I can reduce loops of length three and four 
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(15.23) 

~~)::( = 3rt+2 () ( + V ) rt+6 x 'n-6 ~ ( ) 
2cn+2)'1. A - 2cn+2)": - ~2Cn+2Jn 15 ·24 

but lack an algorithm for reducing loops of arbitrary length. I will 

now proceed to construct such an algorithm for the first three 

identifiable solutions in Table I. 

B1C5) algebra Consider the Clebsch-Gordon series for the product of 

two vector representations of SO(m) 

(15.25) 

The first term is the singlet (N=1), the second term is the adjoint 

representation (9.13) and the third term is the symnetric rank 2 tensor 

representation (N = tn()n;1) - 1). (Clebsch-Gordon series arrounts to 

replacing ti;e three basis ) ( , ;:::: , X by the above three orthonormal bases). 

Let us introduce a notation for the symmetric representation 

Normalization: 

,v 
-hi('\ 

B cmcm-1)_ 1) m octd c15.26) 
!£- 2 ' 

D,.cmCm-1) -1), Ill even 
.. ~ 2 

(15.27) 

(here 13 = 1). By construction this representation is traceless 

--0 = 0 (15. 28) 

l 
I 
j 

I 
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New I take this symmetric representation to be the defining representation 

of the algebra to be constructed. The dimension of the defining 

representation !l is related to the dimension of the underlying SO(m) 

by 

n=O-@-~@- WY\(l'tl-tl) - 1 
2.. 

Lefine a series of symmetric invariants dabc, dabcd, · · · by 

(15.29) 

Ii\ ::. 8 :::. ff\ (15. 30) 

Expansion ( 15. 26) enables us to compute all scalar invariants 

constructed from dabc, dabcd, ... , and perform reductions such as 

. I 
--rn 

(15.31) 

(15.32) 

(15.33) 

(15.34) 
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We note that (15.14) does not hold for this algebra unless dabcd is 

reducible, and 

(15.35) 

Contracting with \I • • and V •• we obtain 

m+2 - - = 8 [m(m+1)+2J A 
m 

m+3 8 
-2- - iii = 2A 

(15.36) 

yielding (m-3) (m+6) = O, so m = 3, A=+, n = 5 is the only SO(m) 

algebra satisfying the characteristic equation (15.14). From (15.13) 
2 

and (15.32) a :,+ S . dabcd is reduoed by 

' 
m=3 (15.37) 

Substituting (15.26) into (15.20) we obtain for the projector 

(15.38) 

,m=3 (15.39) 

with normalization (15.27). It is easily checked that (15.38) is a 

projection operator, and that N=3. Above two relations give a reduction 

algorithm that enables us to compute scalar invariants constructed from 

any number of dabc (15.30). 

By analogy with (15. 30) define fully synmetric 

2 invariants for the adjoint representation of SU(m) (=A 1Cn), n~=m -1, m-
the defining representation for the algebra presently considered): 

' ! 

f 
' 
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(normalization of the Appendix B of Ref. 

etc ... 

' 
The projector (5.6), normalized by 

~ -a­
~- 0 

gives following reductions: 

I ___,(\,__ - ( ~ - .±::_) -
4~~ - t M 

A-

As before, we look for the solution of (15.35) and obtain 

2rn - .§. = [2m2 + 2] !;. 
m 4 

m-.§.=2!;. 
m 4 

(15.40) 

(15.41) 

(15.42) 

(15.43) 

(15.44) 

(15.45) 

(15.46) 

yielding (m-3) (m+3) = O, so m = 3, A=~ n = 8 is the only solution 
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satisfying the characteristic equation (15.14). By (15.45) dijk!l 

is reducible 

(15.47) 

and (15.35) becomes 

(15.48) 

It was shown in Ref. 6, Fig.22c that the first relation is the 

dlaracteristic equation for traceless [ 3x3 J Hermitian matrices , and 
28 

that (15.48) is the SU(3) relation of Macfarlane et al. By (15.3) 

and (15.43) the normalizations are related by a = \0 a. Noting 

further that ~/a = !l, the index, we have from (5.11) a = 6a
0

• 

Substituting (5.6) into (15.20) we obtain for the projection operator 

x ~ ~. [~+p] 
~;.:r. ~ )( -3;:: 

h:8 

' 

Ill ::. 3 
' 

(15.49) 

(15.50) 

with normalization (15.42). 'Ihe first relation holds for the adjoint 

representation of any semisimple Lie algebra (3;21). 

c3 has two 14 dimensional representations. 'Ihe 

symmetric one we are interested in is distinguished by the index i-1 = 2 , 

and appears in the Clebsch-Gordon series for Va V, where Vis the 

m-dimensional defining space for Sp(m) = On (m) representation of On 
2 2 

t 
I 

I 
I 
'j 

' 

I 
I 
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(15.51) 

The first term is the singlet (N=1), the second term is the adjoint 

representation (6.14) and the third term is the symmetric rank 2 tensor 

representation (N- n(n-l) - 2 - 1). Let us introduce notation 

an (m(m-1) -1) 
2 2 s 

(15.52) 

Normalization: 

(15. 53) -
CI shall usually set 13=1). By construction this representation is 

traceless 

= 0 (15.54) 

and symmetric in the sense that it satisfies 

(15.55) 

n, the dimension of this defining representation is related to the 

underlying Sp(m) by 

n=O 
_,_ 

:: ~ 
00 -~ 0 = "'c;_-1) - I (15.56) 
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refine a series of symmetric invariants dabc' dabcd' ... by 

(15.57) 

by (15.55) 

(15.58) 

Expansion (15. 52) enables us to perform the following reductions 

(15.59) 

(15.60) 

and again obtain (15.3'1). As before, we look for the solution of 

(15.35) and obtain 

2 
8 [m(m - 1) + 2] A m- = m 

m-3 8 2A -2- - - = m 
(15.61) 

yielding (m+3) (m-6) = 0, so m = 6, A = -.h., n = 1'1 is the only solution. 

From (15.3) and (15.59) a=-1--, and substituting (15.52) into (15.20) 

we obtain for the projector 

'!. 
I 
' 



\ 

f\= 14 (15.62) 

' 
(15.63) 

(15.64) 

It is easily checked that (15.62) is a projection operator, and that 

N = 21, as it should be for a c3 al-gebra. 

'Ille above sequence of S0(3), SU(3), Sp(6) reflects the 

connection of the rows of the magic square with real, complex, quater-

nion and octonion normed algebras. I shall later show how in Jordan 

algebra analogues of (15.53) and (15.57) appear, but IT\Y diagrammatic 

notation is not suited to the underlying non-associative algebra. 

Furthermore, because of non-associativity,there are no reduction 

expansions analogous to (15.52), and one has to rely on identities 

like (15.14) to obtain reduction formulas of type (15.23) and (15.24). 

I do not have a general reduction algorithm for F4(26). 

a 
16. ob, fab' dabcd INVARIANCE+ E7(56), 

(i) primitives ....:!+-, )( 

By primitiveness assumption 

I :!tot: I 

(here 13 = 1) 

1 
z 
C! 

= 

= B .... 

13 > 0 

n even. (16.1) 

(16.2) 

(16.3) 
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(usually a = 1) 

x-x (16.4) 

2. B o<. :a. 'fl" + C <X:. \_/ 

n+I ~ ~ (16.5) 

(B and C will be fixed by the invariance condition). 

(ii) projector bases ~,X. . (16.6) 

As this a ~,.gebra must be a subalgebra of the o~ , f ab invariance 

algebra Sp(n), I have already incorporated the invarianoe condition 

(6.12)into bases (16.6 ). The projector is of form 

Purely for convenienoe I have chosen this as the normalization 

convention for a, rather than (16.3). 

(iii) invariance condition 

I 
0- - 0( 

Contracting with 
4. 

this can be rewritten as .. ~ . 

O=: I 
o<_ 

BrcMn's 
relation 

(16.7) 

(16.8) 

(16.9) 

I 
I 
.I 
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B and C in ( 16. 3) and (16. 5) can be computed by contracting Brown 1 s 
•• 

relation with 

O= :) (16.10) 

Substituting (16.3) and (16.5) 

This gives a new relationship for (16.5) 

(16.12) 

The tensors on the right hand side have different symmetries and are 

independent. Equating the coefficients in (16.5) and (16.12) yields 

B = (n+l) (n+lO) 
. 12 , C = n~4 

Hence invariance condition has brought (16.3) and (16.5) to form 

(n+l) (n+10) ~_..__ 
- 12 oe-.--

(16.13) 

(16.14) 

(16.15) 
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\ 
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with the normalization a defined by (16. 7). 

(iv) normalization 

From (16.15) we have ~ 

_n+4 r:J.. _A. ::. ~ + n~10 ~ 
6 

(16.17) 

(16.18) 

so that the second term in (16.17) is reducible ' 

projector is given by 

6 A= n+16 , and.the 

l 
(v) algebra dimension 

(vi) index 

N = 3n(n+1) 
n+16 

i-1= 4(n-2) 
n+16 

(16.19) 

(16.20) 

(16.21) 

Comments Solutions of Diophantine equation (16.20) are summarized 

in Table I. The identifiable ones include the entire E7 row of the 

magic square. Invariance condition for dabcd is simply the Brown's 

relation, and combined with the primitiveness assumption it yields 

the dimensional constraints. As for E6 and F4, I do not have an 

algorithm for reduction of arbitrary scalar invariants of E7' 

·~ 
j 
_1 

1 

1 
j 
l 
I 
J 

l 
J 
j 

1 
l 
1 
.~ 
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17. MAGIC SQUARE 

The preceding sections have illustrated how one constructs the 

invariance algebra for a given set of primitives. This effort was 

only partially successful for higher rank synrnetric primitives; we 

did not derive general reduction algorit:hns,but we did derive Diophantine 

equations relating the representation d:il!lension n and the algebra 

dimension N. They were 

F4 series N1(n) = 3n - 36+ :>6o 
· n+10 

E6 series N
2

(n) = 4n - 40+ 360 
n+9 

E7 series N3<m) = 6m - 45+ 360 
m+8 ' n = 

They obey a suggestive recursion relation 

which yields as 

Ea series 

N
2

(k) = k-1 + N1 (k-1) 

N
3

(k) = 2k-1+ N2(k-1) 

a next sequence 

N
4

(k) = 4k-1 + N
3

(k-1) 

= 10k - 52 + 360 
k+7 

(17 .1) 

2m 

(17.2) 

I have not been able to derive this series from invariance analysis 

because I do not know the primitive invariants of Ea, but I include 

it here as study of the other identifiable algebras in this series 

might lead to Ea(24a) primitives. The integer solutions of (17.1) 

and (17.2) can all be simultaneously parametrized by integer m: 

N1 = 3m-66+360/m, n1 = m-10 

N2 = 4m-76+360/m, n2 = m-9 
(17.3) 

N3 = 6m-93+360/m, n3 = 2(m-a) 

N4 =10m-122+360/m, n4 = N4 
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N is integer if m factors into any combination of 23.32.5 = 360. 

In the same parametrization indices are given by 

-1 
9,1 = 5 

72 
m 

72 
m 

36 
m 

(17. 4) 

while 1 by definition, because the defining representation is 

also the adjoint representation. The numrer of integer solutions is 

-1 finite and restricted by m ,;. 360, N ~ 1, n ~ 1 and 9, :;, 0. 

For E6 condition (10.20) restricts n ton ,;. 27; I have not found 

analogous conditions for other series of solutions. 

In Table I, I list all the solutions to (17.3) and (17.4), and 

indicate the ones which can be identified in Cartan's classification. 

It is quite remarkable that our invariance analysis, which at no time 

invoked Jordan algebras, yields the complete Freudenthal 1 s magic 
20 

square as well as Faulkner and Ferrar' s extended magic 
7 

square • Particularly amusing is the series (17.2) which 

contains all exceptional Lie algebras as well as D4, which can also be 

. . 7 
considered exceptional 

The extra solutions to the left of the Freudenthal' s magic square 

suggest its extension to a "magic triangle". 

N
1

(-n) 3 

N2(-n) 1 8 

n 
N3(Z) 3 14 21 

? 2 9 28 (17.5) 

N
1 

(n) 3 8 21 52 

N
2

(n) 2 8 16 35 78 

n 
N3(2) 1 3 9 21 35 66 133 

H , Q 14 ?9 52 78 133 248 
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One can make a guess at their origin by noting the similarity between 

Secs. 14 and 16; the relations of one section can be obtained from 

the relations of the other by turning all syrrmetric objects into 

antisyrrmetric objects and vice-versa. We hypothesize that the top 

four rows of the magic triangle are obtained from the bottom four 

rows by 

F4 series • (lap' A - ~ • '~ (17.6) 

E6 series A. - A (17.7) 

E7 series ~,x - -+<>+' x (17.8) 

ES series - 'A.,~ - ~, 

"'' 
2. (17.9) 

and that 

N(n), i(n) + N(-n), - i(-n). (17.10) 

All the solutions for (17.8) were already given in (14.35). For 
. 2 

(17.6) all the solutions are (here we exclude N > n because we are 

locking at subalgebras of U(n), and N = n2 = 16 because the index 

is not correct for U(4)) 

n 1 

N 1 

i-1 3 

2 

3 

4 

5 

21 (17.11) 

This set of primitives conflicts with Sec. 6 unless fabc = 0 trivially. 

For (17.7) all the solutions are 

n 11 3 

N 1 8 (17.12) 

-1 i i . 3 6 

I A
2

(3) 
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In Sec.7 we have shown that A2(3) is the unique non-trivial solution 

for this set of primitives. We do not know the primitives for E8, 

but we can still guess that N4(k) + N4(-k). 'Ihat yields four solutions 

N 8 28 78 248 
(17.13) 

which are suggestive insofar that D4 appears, but they do not reproduce 

the fourth row of the magic triangle. -· 

'Ihe abcve observations are not particularly persuasive; we include 

them only for their suggestive value, as in the past such numerical 

tables had played an important role in motivating Freudenthal-Tits 

ocnstructions 20 ,15 • 

In our construction the origin.of the parameter m remains mysterious; 

the underlying normed algebra structure which relates oclurnn entries 

is not explicit. It is apparent from the work of Freudenthal 20 ' 21 

that entries along columns form chains of subalgebras, but we have 

not verified that within our formulation of invariance algebras. 
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18. RELATION TO OTHER NOTATIONS 

In the preceding Sections we have given a self-contained presentation 

of our method for constructing invariance algebras. However, as the 

formulation of invariance algebras in terms of invariant tensors 
a _;ihc Db• t- ' .. . 

-) ~, .. . 
and particularly in terms of their diagrammatic representations 

might present a conceptual block to readers accustomed 

to other notations, we shall use the r:emainder of this paper to provide 

a wanslation between our and the established algebraic notations, and 

identify those relations Which have already been given by other 

authors. As is customary, we misattribute most of them; Springer's 

relation had been derived by Freudenthal, Brown's probably first by Springer, 

and so forth. We chose to call them Springer's and Brown's because those 

authors were first to use them in the spirit of the present work, as an 

axiomatic starting point for constructing corresponding exceptional Lie algebras. 

Tensor (or matrix) notation is quite standard for classical 
. 27 29 

groups (cf. Harnmermash Ol'.' Gilmore ) • Let us give an example of 

translating diagrammatic into tensor notation by rewriting Sec.5. 

label the legs by a, b, c, din counterclockwise order, and use (3.2-5); 

(i) primitives: ~· 

(ii)projector bases:~ o~, o~ o~ (5.1) 

(5.2) 

Contracting with o~ and b oc we get 0 = n + b and 0 = l+nb. 

(5.3) 
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(5.4) 

) u (h) 
(5.5) 

(This projector is simply identity, because the algebra is entire U(n) 

algebra. All other projectors, like (5.6), project out subalgebras 

of U(n) ). 

c<>C. _, ca~c 
- Ob4 - h Oa b ) 

(This is sometimes called completeness relation 28 ). 

Case 1. N Pac oaoc 2 = = = n ca ac 

Case 2. N oaoc - .! oaoc = 2 - 1 = n ac n ca 
1 

cijk cjH = 2n okt- 2 Tr (Tk) Tr (Tt) - -a 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Literature discussions of classical groups are considerably longer, because they 

usually involve an explicit construction of the generators of the group. 

As we argue in Sec.2, this is superfluous; projectors fully define the 

invariance algebra. 

Rewriting abstract products in tensor notation amounts to 

introducing a basis for the elements of the underlying algebra A 

' r 

i 
j 

f 
} 
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x = Xe a 
a (18.1) 
a 1,2, x = x e a' a = ... n 

x = x e a a for real representations (18.2) 

This is simply a notational device, not a choice of a particular 

basis set; ea can be any n linearly independent elements of A. In 

Freudenthal's notation 21 a derivation is a trilinear mapping 

A Ill! A ll!!A + A denoted by 

Dz= < x, y > z (18.3) 

In tensor notation this mapping is performed by the projector ( 3. 6). 

Indeed, if we substitute (18,+).in (18.3) and replace (2.9) by 

(18.4) 

we obtain 

a d pad c 
<e,~>e=abc.e (18.5) 

Algebraic notation is more ccmpact than the tensor notation, but not any 

more compact than the diagrammatic notation; 

< x, y > z (18.6) 

In addition, the diagrammatic notation makes explicit synrnetries that 

are not obvious algebraically, such as D. ~ y, X* z interchange synrnetry 

in (18.6). In the following Sections we illustrate the above by rewriting 

the literature results on G2 , F 4 , E6 and Er 



88. 

19. HURWITZ'S 'IHEOREM AND G
2

(7) 

'•'--f. . . 30 '-"' ini tion : a normed algebra A is an n+1 dimensional vector 

space over a field F with a product xy such that 

i) x (cy) = (cx)y = c(xy) c E F 

ii) x (y+z) = xy+xz x,y,zs A 

(x+y)z = xz+yz ' 
and a nondegenerate quadratic norm which p~rmits composition 

iii) N(xy) = N(x) N(y) , N(x) e F (19.1) 

Here F will be the field of real numbers. Let 

· {e ,e1 , .•. ,e} be a basis of A over F; 
o n 

x = x e + x
1
e

1 
+ .•. + x e ; x E F, e e A oo nn a a 

It is always possible to choose e = 11. 
0 

(see Curtis 30 ). The product 

of remaining bases (18.2) must close the algebra 

a, .. ,c = 1,2 •.. n 

We define the norm in this basis by 

2 From the syrrnnetry of the associated inner product 

(x,y) = (y, x) = N(x+y) - N(x) - N (y) 
2 

it follows that - dab = Cea, eb) = (eb, ea) is syrrnnetric, and it 

is always possible to choose bases e such that a 

e e = -ab 

(19.2) 

(19.3) 

(19.4) 

i 



i 
i 

Furthel1Ilore , from 

( ) _ N(xy+x)~N(X)N(y) 
- x y,x -

2 

= N(x) (y,1) 

89. 

= N(x) N(y+1) - N(y) - 1 
2 

it follows that fab = Ce eb,e ) is fully antisymmetric . (In Tits• 2 
c a c 

notation the multiplication tensor f abc is replaced by a cubic anti-

symmetric fol1Il Ca, a' .a"), his equation (14)). The composition 

requirement (19.1) expressed in temiS of bases (19.4) is 

0 = N(xy) - N(x) N(y) 

= xa~Ydfd (oac 0bd - 0ab 0cd +face fcbd) 

To make a contact with Sec. 13 we introduce diagrammatic notation 

(factor i /r a. adjusts the nol1Ilalization) 

a 

fabc = iV~ f.c 
Diagrammatically (19.5) is given by 

This is precisely the relation (13.15) which we have proven to be 

(19.5) 

(19.6) 

(19.7) 

non trivially reaJizable only in 3 and 7 dimensions. The trivial realizations 

are n = 0 and n = 1, fabc = 0. So in Sec. 13 we have proven Hurwitz's 
30 

theorem : n + 1 dimensional nol1Iled algebras over reals exist only for 

n = O, 1, 3, 7 (real, complex7quaternion,octonion). We call (19.7) 

the alternativity relation because it can also be obtained by 

31 substituting (19.4) into the alternativity condition for octonions 

[xyzJ= (xy)z - x(yz) (19.8) 

[xyzJ= [zxyJ = CyzxJ= -[yxzJ 
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1 
Cartan was first to note that G2(7) is the isomorphism group 

of octonions, i.e. the set of transformations of octonion bases 

which preserve the octionionic multiplication rule (19.4). The 

reduction identity (13.16) was first derived by Behrends et al. 32 

and independently by Tits 2 (in very different notation, his equation 

(16)). Tits also constructed the projector for G2(7) by defining the 

derivation on an octionion algebra 

Dz = <x, y>z 

=-~ ((x.y). z) + + [ (y ,z)x-(x,z)y] Tits (23) 

where (19.9) 

(19.10) 

Substituting (18.2) we find 

(Dz)d = - 3 xayb [~(cad 0bc - 0ac 0bd) ++fabe feed J zc 

The term in the brackets is just the G2 (7) projector (13.31), with 

normalization a= - 3 in (18.4). The non-hermitean normalization 

a = - 6 in (13.2) does not follcw our convention (3.11-13) and we 

prefer to replace (19.9) by 

(e .eb): i fab e a c c 
(19.11) 

analogous to (2.13). In that case the normalization 

-0- = 6- (19.12) 

has a simple combinatorial interpretation; if we colour the diagram 

(19.12) with seven oolours, and require that colouring around the 

vertex is such that for any two given colours there is a unique 

third colour allcwed (triality~), then there are 6 possible colourations. 

! -
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20. JORDAN ALGEBAA AND F 4 ( 26) 

Consider the exceptional simple Jordan algebra of traceless Hermitian 

J . • h . . 1 20, 31 [ 3x3 matrices x wit octonion matrix e ements . The non-

associative multiplication rule for elements x can be written in 

basis (18. 2) as 

a, b, c = 1, 2 ... 26. 

+dab e cc 
(20.1) 

where Tr (e ) = 0 , and 1 a is the [3x3J unit matrix. Traceless 

[3x3J matrices satisfy a characteristic equation 

3 2 -t• 3 -fl x - ~ Tr (x )x Tr(x ).JL = 0 

Substituting (20.1) we obtain (15.14), with normalization a=+. 

Substituting (20.1) into the Jordan identity 

Cxylx2 = x(yx2) 

(20.2) 

(20.3) 

we obtain (15.15). It is interesting to note that the Jordan identity 

(which defines Jordan algebra in the way Jacobi identity defines Lie 

algebra) is a trivial consequence of (15.14). 

F 4 ( 26) is the group of iscmorphisms which leave farms 

Tr(xy) = cab xa ~ and Tr (xyz) = dabc xaybzc invariant/ The derivation 

is given by Tits 2 as 

Dz= (xz)y - x(zy). Tits (28) 

Substituting (20.1) 

(Dz) =-3 x y 
d ab 

we obtain the projector (15.20) 

C0ad 0bc-0ac 0bd + ~cedead -
9 

Note the definition dab =Tr (e eb e ) is analogous to (15.30), c a c 

(20.4) 

( 15 . 40 l, and ( 15 . 5 7) ; the crucial difference between those invariants 

and the F4(26) invariant is that the underlying algebras are associative. 
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This enables us to give reduction algorithms in ter'ms of projectio~ _ 

operators for B1(5), A2(B) and c3(14) r:presentations, but not for 

F
4

(26). 

21. SPRINGER'S CCNSTRUCTION OF E
6

(27) 

Consider the exoeptional simple Jordan algebra A of Hermitian 

[3 3] . . h- . . 1 20,21,3 d 't x matrices x wit octonion matrix e ements , an i s 

dual A (complex conjugate of A). Following Springer 3 define products 

cx,y) = Tr <i(yl 

xXy = z 
3 <x,y,z> = <xXy, z) 

and assume they satisfy 

<xX x) X <xX x) = < x,x,x> x 

( 21.1) 

( 21. 2) 

(21.3) 

Expanding x, x in bases ( 18 .1), n = 2 7, we chose a normalization 

(e ,eb> = ob 
a a 

and define 

Substituting into (21.3) we obtain (10.10), with a=t. 

( 21. 4) 

(21.5) 

Freudenthal 21 

and Springer 3 prove that (21.3) is satisfied if dabc is related to the 
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usual Jordan product 

by 

d -abc 

93, 

(21.6) 

( 21. 7) 

- b a 
E6C27) is the group of isomorphisms which leave (x,y) = oa x yb 

and <x,y,z>= dabc xa yb zc invariClrlt. The derivation was constructed 

h 1 21 ( . . (1 )) by Freudent a his equation .21 : 

Dz=<x,y> z = 2yXCx)(zl - ~ <y,z>x-+<x,y> z 

Substituting (21.4-5) 

(Dz:)4= - 3 xayb 

we obtain the projector (10.14), n = 27; 

The object< x,y> considered by Freudenthal is in our notation ..J.. 
and the above factor -3 is the normalization (3.19), Freudenthal's 

(1.26). The invariance of x-prcduct is given by Freudenthal as 

< x, xXx > = 0 

Substituting (21.5) we obtain (4.1) for A. 
22. BROWN'S CONSTRUCTION Of E7C56) 

Brown 4 considers a finite dimensional complex vector space A 

with following properties 

( 21. 8) 

i) !::_possesses a non-degenerate skew-syrmnetric bilinear form {x,y}. 

ii) !::_possesses a syrmnetric four-linear form q (x,y,z,w). 

iii) If the ternary product T(x,y,z) is defined on A by 

{T(x,y,z),w} = q (x,y,z,wl, then 

3 {T(x,x,y), T(y,y,y)} = {x,y} q(x,y,y,y) (22.1) 
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Substituting (18.1) into (22.1) and defining 

( a b c ed) = dabcd q e,e,e, 

we obtain Brown's relation (16.9) with nonnalization a=+. 
* 

(22.2) 

(22.3) 

The 

derivation was constructed by Freudenthal (SP on p.225, Ref. 21), 

but not in a form that can be readily compared with (16.19), 

Another variant of the above axiomatization is a symplectic triple 

system 33 , 34 defined by a ternary product [x:yzJ e: A which satisfies 

[x:yzJ = [yxzJ 

[x:yz] - [xzy] + {x,y} z - {x,z} y - 2 {y,z} x = 0 

[x:y[uvwJJ = [[xyuJvwJ+ [u[xyv]w] +[uv[xyw]J 

(22.4) 

(22.5) 

(22.6) 

From the last relation it is clear that this product is a derivation 

Dz = 
Indeed, if we 

[ea~ed 

[x:yzJ 
substitute (18.1) and define 

d ef 
= e 24 Pac feb ffd' 

or diagrammatically 
24 'llvZ. 
a ;t~y {Cx:yz], u} ...__. (22.7) 

(the extra fab factors make this an invariant of A alone; A can be 

considered pseudo-real), it is easily checked that (22.4-6) are 

.·~ satisfied. In particular, (22.5) follows from application of .....,.. 

to the projector (16.19), n = 56; 

~ );( = 
1 
24 ()( ;() 

* We thank T. Springer for bringing this to our attention. 

(22.8) 

n ... · .. ····~···· ,, 
l 

I 
I 
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23. S0(4) 

In Sec. 14 we have shown how D
2

(6) decomposes into A
1

(3) + A
1

(3). 

This has been used in the study of th€ classical solutions 

of Yang-Mills theories, in the following form; 't Hooft 38- 40 maps 

the vectors of one S0(3) subalgebra on self-dual S0(4) tensors Aµv by 

-ri A aµv a a = 1,2,3 
µ,v = 1,2,3,4 

(23.1) 

and the vectors of the other S0(3) subalgebra on to anti-self-dual 

S0(4) tensors B by µv 

= (23.2) 

We do not need his explicit representation for ri,n S0(3) generators, 

as our projectors (14.18) and (14.19) already des=ibe the subalgebras. 

They are related to ri,n of 't Hooft by (2.21) 

p(+) 1 = - 4 ai3, µv 

(-) 1 p = 4 ai3,µv 

Diagramnatically riaai3 

various identities 33- 4o 

Sec.14. 

(23.3) 

(23.4) 

= 
a.1-

= ... -+-I' and 

for ri 'n fullow from the relations of 

for example, substitute (14.33) in 

I 

2.. 

and use (8.7) to obtain 

(23.5) 

(23.6) 
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In 't Hooft's notation this is 

o n + o n + o n + n s = o 
K aµv KV a\µ Kµ av\ acrK \µva 

(23.7) 



APPENDIX 

Here we list some identities for r4 series which illustrate how 

the projectors and the characteristic identities satisfied by the 

primitives are used to reduce canplicated invariants. r4(26) identities 

are given by n = 26. 

--0 = 0 

~=«-

~" ~:2-~ 
From these follow: 

ho(3 @ = 

simplicity 

nornalization 

characteristic equation 

' h = .2.6 

2. 1'1-IOn-16 

2. (n+ 2.)'-

I fgf = 
h3-3n1+ SOI\+ 100 

h«'°' 4 (h+Z.) 3 

®1 2.. 
(3n+10) 

n Cl(" - 12..(n+2.) 3 

2.77 
"1·73 

(15.2) 

(15.3) 

(15.14) 

(15.23) 

(15.24) 

(A.1) 

(A. 2) 

(A. 3) 

(A.4) 



From the definition of the projector 

f 't" _ ~ r ~ + h+2. w 1 
a ~ - n+10 L'7'\ 4"" M 

--0-- '=-a- normalization 

f = 1:!.. ...... : 
~(•-2.:! -a v n 11+ 10 

~ -& : l~-L 

~~ = ~ ..J_ 

t-0- 5n - 2.2. = n + 10 

~1~ = 5n-Z'l. [ ~ ¥. - ~ h~IO 7n-:z.o ~1 

(15.20) 

(2.14) 

(15.21) 

(A. 5) 

(A. 6) 

(15.22) 

(A. 7) 

J... \--( _ Sh-2.'2.. { _'! [ v•)( X]+! n-s W _ 3:..[ \7 +)...,,{]~ 
a .. 0 - 7h-2.0 n+10 I"\ + a•h+10X ?C-- P\ ~ -~ (A. 8) 

.:: 

2.t 113+ 2.2.5h .. -17at> 11 + 662.o 

l2.(n+10) 3 

.f. (!in-2.'2..)'2..(Sn""--'ll n +170) 

S (n+10)°(7n-2.o) 

_ t (5n-2.'2..)'(85h3-soln'+ l0&50n -50000) 

(h+to)-'I (7n-2.o)'2.. 

5 
=Ii 

(5n-2.2);(2.113+ 1qSol.+ 4758 n -2.8210) 

(n+10 ) 4 (7n-2.o )"" 

(A. 9) 

(A.11) 

(A.12) 

-1 l3· 7q (A.13) 
- 2.. 

n..-i.6 

(A.14) 
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Table I. 

All solutions of the Diophantine equations of Sec. 17. The solutions which 

cannot be realized are given in small print. Algebras within the solid box 

form the Freudenthal's magic square; the dotted box is the extension of 

magic square of Faulkner and Ferrar. 




