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Abstract 

We study the properties of spinors in n dimensions and the consequences 
of taking Dirac matrices to be Grassmann valued. We find that this yields 
representations of the sympletic group in n dimensions, which can be 
interpreted as representations of the orthogonal group in - n dimensions. 
In particular we find the sympletic analogues of spinorial representations. 
We also prove that the relation Sp (n) 1 SO (- n) holds in general. 

1. Introduction 

The subject of this paper is some aspects of the representation 
theory of the classical groups. However, it is not written in the 
conventional tensor notation but instead in terms of an equiva- 
lent diagrammatic notation. These diagrams are sometimes 
called “birdtracks” [ 11 . The advantages of this notation will 
become self-evident, we hope, but two of the principal benefits 
are that it eliminates “dummy indices”, and that it does not 
force group-theoretic expressions into the one-dimensional 
tensor format (both being means whereby identical tensor 
expressions can be made to look totally different). Similar 
diagrammatic techniques have been used many times before 
([2] and references in [3 ,4] ) .  

Section 2 reviews previous results [ 5 ]  about SO (n )  spinor 
diagrams, which have been reexpressed in a more symmetric 
notation which emphasizes the relationship between Fierz 
coefficients on the one hand, and 3 - 1  and 6 -1 coefficients 
on the other. The reduction methods described in this section 
provide an efficient (polynomial) algorithm for reducing arbit- 
rary spinor traces into sums of terms involving Fierz coefficients, 
3 - j and 6 - j coefficients for antisymmetric tensor representa- 
tions of SO (n )  groups. We also derive explicit expressions for 
these coefficients by simple combinatorial arguments: the Fierz 
[ 5 ,  61 and 3 - j [7] expressions were known before, but the 
6 - j ones are apparently new. 

In Section 3 we investigate the consequences of taking y- 
matrices to be Grassmann valued. We are led to a new family of 
objects, which we call spinsters, which play a rBle for symplectic 
groups analogous to that played by spinors for orthogonal 
groups. With the aid of spinsters we are able to compute, for 
example, all the 3 - j and 6 - j coefficients for the symmetric 
representations of Sp (n).  We find the surprising result that 
these coefficients are identical with those obtained for SO ( n )  if 
we interchange the roles of symmetrization and antisymmetriza- 
tion and simultaneously replace the dimension n by - n .  In 

Section 4 we investigate this further, and we prove that under 
the interchange of symmetrizers and antisymmetrizers SO(-n) 
Sp (n )  and SU (- n )  SU (n)  for any scalar quantity made out 
of arbitrary tensor representations, 

Section 5 makes use of the fact that Sp (2) = Su (2) to show 
how the formulas for SU (2) 3 - j and 6 - j coefficients [8] are 
special cases of the general expressions for these quantities we 
derived earlier. The observation that SU(2) can be viewed as 
SO (- 2) was first made by Penrose [2] , who used it to compute 
SU (2) invariants using “binors”. His method does not generalize 
to SO (n ) ,  for which spinors are needed to project onto totally 
antisymmetric representations (for the case n = 2 this is not 
necessary as there are no other representations). 

Finally, in Section 6 we discuss various interesting questions 
concerning the consequences of taking the spinsters seriously, 
and the extension of our analysis to orthosymplectic groups. 

2. Spinors 

In this section we give a brief review of the diagrammatic nota- 
tion and results of [SI. The basic notations for spinor and 
defining representations of SO (n )  are 

p , u  = 1 , 2  , . . . ,  n d V =  P V 

P 
I 

(2.1) 
(yp)ab = a--*-l----- b 

A, t r f  = , ,  ‘.&’ 

For simplicity we shall omit arrows on defining representation 
lines, and take all the corresponding indices to be lower. The n- 
dimensional Dirac matrices are defined by the condition that 
they satisfy the Clifford algebra 

P V  P V  
v 

+------ 4- - 

We use the following notation for (anti)symmetric projection 
operators 

Present address. 
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For antisymmetrized products of gamma matrices the Clifford 
algebra leads to (cf. Appendix A) 

Predrag Cvitanovic! and A .  D. Kennedy 

Using this relation recursively we can express any product of 
7-matrices as a sum over antisymmetrized products of 7-matrices. 
For example 

U 
(2.5) J l *  = A+.. + ----- 

.ILL = -JH- + AX =..hY.+{.U.L.-.Y.+-lU} 

Hence the antizymmetrized tensors J ? ( k )  provide a complete 
basis for expanding products of 7-matrices: 

Applying the anti-commutator (2.2) to a product of 7- 
marices we can move the first y-matrix all the way to the right 
and obtain 

123 P 123 P 

For an even number of 7-matrices this yields a recursive rule 
for evaluation of spinor traces: 

. .  

The proof that a trace of an odd number of 7-matrices vanishes 
for n even is given in Appendix B. Equation (2.8) may be solved 
recursively, the grapical result being a sum of all @ - l)!! ways 
of pairing the p external legs with a minus sign for each time 
two defining-representation lines cross: this is made much clearer 
from a few examples 

U 

A simple corrolary of this result is that the orientation of a 
spinor loop is unimportant, i.e., that 

tr [TI. . . 7 v l  = t r  K T p .  . . 7 v Y I .  

The preceding identities are in principle a solution to the 
problem of evaluating spinor traces. In practice they are intrac- 
table, because they yield an exponentialy growing number of 
terms in intermediate steps of trace evaluations. We will there- 
fore describe a more efficient algorithm based on Fierz identities. 
Fierz identities utilize r-matrices as a basis of 7-matrix algebra, 
and replace traces (2.9) by more compact traces of r's. 

Evaluation of traces of two or three r's is a simple combina- 
toric exercise using the expansion (2.9). Any term in which a 
pair of gpv indices are antisymmetrized vanishes, which implies 
that I?@), k > 0, is traceless. This is a special case of the ortho- 
gonality relation (true for n = even dimensions) 

which is in turn a special case of the three-I' trace 

Ibl Ibl 
s = 4 ( b + c - u )  c = f ( c + a - b )  U = $ ( u + b - c )  

We could continue and compute the four-r trace and so on, but 
fortunately such tedium is unnecessary, as all r traces may be 
reduced to those already calculated using the completeness 
relation which we will now derive. 

As we have shown in eq. (2.4), any product of y-matrices 
may be expressed as a sum over the antisymmetric bases 
We write this as 

1 2  k 

I.-------., 
1 2  k 

I 
(2.12) I I .'* I 

where we have expressed the coupling coefficients as spinor 
traces; this is a simple consequence of the orthonormality 
relation (2.10). 

For the purposes of reduction of spinor traces to 6 - j coef- 
ficients which we shall carry out here, it is convenient to stream- 
line the notation at this point. The orthogonality of the r's eq. 
(2.10) enables us to introduce projection operators 
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,.l: the factor of trQ is a convenient (but inessential) normaliza- 
tion convention. For the trivial and single y-matrix representa- '. 1 -*-4--- = 
tions we shall omit the labels, 

-<-cl--- l a  - - b 

\ I d c  
.-# 

b ,, 0 / - I !' ,-: - 
8.. -.*\ 

(2.21) -*-- la --- 
,; 'h (2.14) 
\, I' - 

.' 4 - 
b\ 1 I' 

in keeping with the original definitions (2.6). 

by the three-I' trace of eq. (2.1 1) 

;-; = I' ,-; ,'% $,J d a 

In terms of this new notation we may define a three-vertex Another example is the reduction of the eight y-matrix trace 
(12 - j coefficient) tr [yryuypyoy"y~+yuyP] : 

(2.15) - - -  

C 

Yb - 

which is non-zero only if a + b + c is even and a, b ,  and c satisfy 
the triangle inequalities la - b I < c < a  + b. It is important to 
note that the spinor loop runs counterclockwise in this defi- 

the interchange of two legs, the general rule being derived from 
eq. (2.1 1) 

nition because the three-vertex has a non trivial symmetry under I ,  
L.' 

(2.16) (2.22) 

C which has been expressed as a sum over Fierz coefficients and 

In general the reduction of a spinor trace wlll also lead to 

s t + t u  +us 

with s, t, U defined in eq. (2.1 1). The completeness relation 
(2.12) may be written as -i 

,*-- 6 - j symbols. As an example consider 
(2.17) 

1 --\ c I ,-, 
-* ------- 

'*- - - - 
*- p, _--' ----_-- 

,-*' 

Now that we have the completeness relation we can evaluate 
spin traces in an efficient way by viewing them as complicated 
3 n - j  coefficients and reducing them to a standard set of 
3 - j and 6 - j coefficients. First of all we derive the recoupling 

(2.23) 
where d b  = (g) is the dimension of the antisymmetric rank b 
representation, and the 6 - j symbol occurring on the right- 
hand side is called a Fierz coefficient [9].  The derivation of 
eq. (2.18) is as follows: .- 

(2.19) 

y,, b ,'- 
= 7 p a b  

where we have used Schur's lemma, and the coefficients /.3 are 
found by taking a trace 

(2.20) 

As an example of how eq. (2.18) may be used let us reduce the 
vertex diagram 

It should be clear by now that an arbitrary spinor diagram with 
external legs may be reduced to a sum of terms each of which 
consists of a combinatorial factor, expressed as a product of 
3 - j ,  6 - j ,  and Fierz coefficients, times a tree diagram giving 
the tensor structure. 

AU that remains to be done, therefore, is to find explicit 
expressions for the 3 - j ,  6 - j ,  and Fierz coefficients. The 
Fierz symbols, which are spinorial6 - j symbols, can be related 
to non-spinorial3 - j symbols using completeness (2.17) 

Physica Scripta 26 



8 Predrag Cvitanovik and A .  D. Kennedy 

(2.24) 

where we have made use of (2.15) and (2.16). The 3 - j  and 
6 - j may be evaluated by simple combinatorial considerations 
(Appendix C) and are found to be 

n !  - (2.25) r b c  = 0 s ! t ! u ! ( n  - s -  t - U ) !  

s = f ( b + c - a )  t = i ( c + a - b )  U = f ( a + b - c )  

al  + a 2  + a 3  
2 

al + a3 + a4 + a6 
2 

- t  + t  t 5  = t ,  = - 

al + a 5  + a 6  
2 

al + a2 + a4 + as 
2 

- t  + t  16 = t2 = - 

a2 + a 4  + a 6  
2 

a2 + a3 + as + a6 
2 

- t  + t  t ,  = t3 = - 

a3 + a4 + a5 
2 

+ t  t4 = - 

The summation in eq. (2.26) is over all values o f t  such that all 
the t i  are non negative integers. Naturally, the 3 - j (2.25) is a 
special case of the 6 - j  (2.26). The Fierz symbols (2.24) 
become 

- 1 ip n !  
/,. .:> = (-)&+b+W 

L d  * b C ( n - s - t - u ) ! s ! t ! u !  

where we have used the identities t = a -U, s = b -U, and 
s + t + U = a + b - U. Expressions for the cases where b is small 
are particularly simple, 

(2.28) 

Let us now show how this works by a few examples: the evalua- 
tion of eq. (2.22) gives: 

= n + n(n - l ) ( n  - 4)2 

because for all terms in the sum other than b = 0, 2 the 3 - j  
coefficients vanish. The result of eq. (2.23) may be written as 
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(2.30) 

= n3 + n(n - l ) ( n  - 4)2 - 2n2(n - l ) (n  - 4) 

- n(n - l)(n - 2)(n - 4)2 

= n3 -n(n - 1)(n -4)(n2 -5n + 12) 

To summarize, we have shown that spinor traces in arbitrary 
dimension can be evaluated quickly and effeciently by means of 
Fierz relations. The result can be stated in terms of 3 - j and 
6 - j coefficients for the tensor representations of SO (n). 
Spinors play a rather peripheral role; in the final results they 
appear as overall factors of trO. In the next section we shall 
repeat the above construction for spinster traces and obtain 
3 - j and 6 - j coefficients for the fully symmetric represent- 
ations of Sp (n). 

3. Spinsters 

The Clifford algebra (2.2) elements (7Jab are commuting 
numbers. In this section we shall investigate consequences of 
taking rCc to be Grassmann valued 

(7w)ab (Tu)& = - (7u)cd (7p)ab (3.1) 

f [7P,7v l  = f W  n P , V  = 1,2, . . . , n  neven (3.2) 

The Grassmann extension of the Clifford algebra (2.2) is 

The anticommutator gets replaced by a commutator, and the 
SO (n)  symmetric invariant tensor gW by the Sp(n) skew- 
symmetric invariant tensor f P u .  Just as the Dirac gamma matrices 
lead to spinor representations of SO (n), the Grassmann valued 
yP give rise to Sp (n)  representations, which we shall call spin- 
sters. Introducing a diagramatic notation for the skew sym- 
metric invariant tensor 

f P V  = - f"P 

p-y = -A = - 7 

f P V f U P  = - 6; 

(3.3) 

= - -  (3 -4) 

we represent the defining commutation relation (3.2) by 

CLV C L Y  

a-+ kc - a C 
(3.5) 

- w  
----*--- 

For the symmetrized products of ymatrices the above commu- 
tation relation leads to (cf. Appendix A) 

As in the previous section, this gives rise to a complete basis- 
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for expanding products of ymatrices. r‘s are now the sym- 
metrized product of 7-martices: 

123 a 

(3.7) 

Note that while for spinors the I‘(k) vanish by antisymmetry 
for k > n, for spinsters the F(k)’s are non-vanishing for any k ,  
and the number of spinster basis tensors is infmite. However, a 
reduction of a product of k ymatrices involves only a finite 
number of I?”, 0 Q I < k. As the components ( T ~ ) ~ ~  are Grass- 
mann valued, spinster traces of even numbers of y’s are anti- 
cyclic 

tr 7pyu = ( ~ p ) a b ( 7 u ) b a  = - tr 7uyp 
/-.. P., 

‘.>.’ 7:,*,,‘7y = - 7‘ + 
tr r p ~ u r p ~ o  = - tr YUYPYUYP (3.8) 

P\--.JV - r\.q 
).-A( ).-*< 

- -  

U P U P 
In the diagrammatic notation we indicate beginning of a spin- 
ster trace by a dot. The dot keeps track of the signs in the same 
way as the triangle (3.3) for fpu. Indeed, tracing eq. (3.5) we 
have 

tr YpYu = f p u  tr 

(3.9) 

Moving a dot through a y-matrix gives a factor - 1, as in eq. 
(3.8). 

Spinster traces can be evaluated recursively, as in eq. (2.8). 
For a trace of an even number of 7’s we have 

A trace of an odd number of y’s vanishes (Appendix B). 
Iteration of the equation (3.10) expresses a spinster trace as 

a sum of the (p - l)!! = (p - l)(p - 3). . .5.3.1 ways of con- 
necting the external legs with f p u .  The overall sign is fured 
uniquely by the position of the dot on the spinster trace: 

and so on (cf. eq. (2.9)). 
Evaluation of traces of several r’s is again a simple combina- 

toric exercise. Any term in which a pair of f p u  indices are sym- 
metrized vanishes, which implies that any with k > 0 is 
traceless. The F’s are orthogonal: 

The symmetrized product of a fp ’s,  denoted by 

I (3.13) 

is either symmetric or skew-symmetric 

-sL- = c - i p  (3.14) 

A spinster trace of three symmetric Sp (n) representations 
defines a 3-vertex: 

,--. t albl  cl 
1 - 1 ’  , ; (-) - 

’.-.’ s! t !  U !  (3.15) 

= 0 f o r a + b + c  = odd 

s = $ ( b + c - e )  r = i ( c + a - b )  U = j ( a + b - c )  

As in eq. (2.12), r’s provide a complete basis for expanding 
products of arbitrary numbers of y-matrices 

The coupling coefficients in eq. (3.16) are computed as spinster 
traces using the orthoganality relation (3.12). As only traces of 
even numbers of y’s are nonvanishing, spinster traces are even 
Grassmann elements and thus commute with other r’s and all 
the signs in the above completeness relation are unambiguous. 

The orthogonality of F’s enables us to introduce projection 
operators and three-vertices 

The sign factor (-)’ gives a symmetric definition of the three- 
vertex, fc. eq. (3.15). It is important to note that the spinster 
loop runs clockwise in this definition. Because of eq. (3.14) the 
three-vertex has a non-trivial symmetry under interchange of 
two legs: 

a b  a b y = ( - ) s + t + u  y 
C C 

(3.19) 

Note that this is different from eq. (2.16)- one of the few 
instances of spinsters and spinors differing in a way which 
cannot be immediately understood as n + - n continuation. 

The completeness relation (3.16) can be written 

We keep an arbitrary number of y’s to indicate the way in which 
the spinster trace is to be taken; this keeps track of Grassmann 
signs. 

The recoupling relation is derived as in the spinor case 
(2.18) 

Here d ,  is the dimension of the fully symmetrized rank b repre- 
sentation of Sp (n): 
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The spinster recoupling coefficients in eq. (3.21) are analogues 
of the spinor Fierz coefficients in eq. (2.18). Completeness can 
be used to evaluate spinster traces in the same way as in examples 
(2.21) to (2.23). 

The next step is the evaluation of 3 - j ' s ,  6 - j's and spinster 
recoupling coefficients. The spinster recoupling coefficients can 
be expressed in terms of 3 - j 's, just as in eq. (2.24): 

The evaluation of 3 - j and 6 - j coefficients is again a matter 
of simple combinatorics (Appendix D): 

s + t + u  s ! t ! u !  

(3.24) 
. I  

- n + ; - l )  (-Yt! 
8 ,  4 t ,  ! t ,  ! t 3  ! t4  ! t ,  ! t ,  ! t ,  ! 

(3.25) 4 

with the ti defined in eq. (2.26). 
We close this section by a comment on the dimensionality of 

spinster representations. Tracing both sides of the spinor com- 
pleteness relation (2.17) we determine the dimensionality of 
spinor representations from the sum rule 

(3.26) 

Hence Dirac matrices (in even dimensions) are [2"" x 2"/'], 
and the range of spinor indices in eq. (2.1) is a, b = 1, 2, . . . , 
p z  

4. Negative dimensions and SO (n) * Sp (n) duality 

When we took the Grassmann extension of Clifford algebras in 
Section 3 it was not too surprising that the main effect was to 
interchange the rale of symmetrization and antisymmetrization. 
All the antisymmetric tensor representations of SO (8) corre- 
spond to the symmetric representation of Sp (n). What is more 
surprising is that if we take the expression we derived for the 
SO (n )  3 - j and 6 - j coefficients and replace the dimension n 
by - n we obtain exactly the corresponding result for Sp (n).  
The negative dimension arises in these cases through the relation 
(-a") = (-)" ("+:-'), which may be justified by defining the 
binomial coefficients as beta functions. 

Such relations between Grassmann extensions and negative 
dimensions have been noticed before; for example, Parisi and 
Sourlas [ lo ]  have suggested that a Grassmann vector space of 
dimension n can be interpreted as an ordinary vector space of 
dimension -n. An early example of this property of negative 
dimensions is Penrose's binors [2] ,  which are representations 
of SU (2) N Sp (2) constructed as SO (- 2). King [ l l ]  has 
proved that the dimension of any irreducible representation 
of Sp (n) is equal to that of SO (n) with symmetrizations 
interchanged with antisymmetrizations (i.e., corresponding to 
the transposed Young tableaux) and n replaced by --n. Such 
relations have also been noted for loop equations, Casimir 
operators and for exceptional groups [ 12, 131. 

We will show that these observations are not accidental, and 
that the following general result holds: For any scalars con- 
structed from tensor representations of the classical groups 
(all 3n - j coefficients), the interchange of symmetrizations 
and antisymmetrizations is equivalent to the "analytic con- 
tinuations" SU (n) + SU (- n), SO (n) -, SO (- n) % Sp (n), 
s p  (n )  + s p  (- n) = so (n).  

Let us explain why this is so for a simple example in SU (n) 
first. SU(n) preserves only two invariant tensors, the Levi- 
Civita tensor E,+ . . . 9n and the Kronecker tensor SZ, and its 
birdtracks are made out of these objects: 

For spinsters tracing the completeness relation (3.20) yields 
(the string of 7-matrices was indicated only to keep track of q =  p-v 
signs for odd b's): 

n + b - l  (tr 4 = ( ) 
b=O 

The spinster trace is infinite. This reveals why spinster traces A 3n - coefficient is just a number which, in birdtrack nota- 
are not to be found in the usual classification of the finite- tion, corresponds to a graph with no external As the dimensional irreducible representations of Sp (n). One way of directed lines must end somewhere the Levi-Civita tensors can 
making the traces meaningful is to note that in any spinster trace only be present in pairs, and can thus always be eliminated evaluation only a finite number of r's are needed, so we can because of the identity 
truncate the completeness relation(3.20) to terms 0 < b < b,,, . 
A more pragmatic attitude is to observe that the final results 
of the calculation are the 3 - j  and 6 - j  coefficients for the 
fully symmetric representations of Sp (n), and that the spinster 
algebra (3.2) is a formal device for projecting only the fully 
symmetric representations from various Clebsch-Gordan series 621 
for Sp (n). Our 3n - j coefficient, therefore, corresponds to a diagram 

The most striking result of this Section is that the 3 - j  and made solely of closed loops of directed lines and symmetry pro- 
6 - j coefficients are just the corresponding so (n) Coefficients jection operators. Consider the following typical exanlple, an 
evaluated for TI -+ - n. The reason will become clear in the su (n) 9 - j coefficient for recoupling three antisymmetric 

next section. rank-two representations: 
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ally as before by a black triangle. A Levi-Civita tensor can appear 
in a 3n - j diagram now, but it adds nothing new because 

cx detf=number (4.6) 

and therefore -@3+B+@-@ (4.3) 

- n 3 -  2 -  2 ... - n n + n - n 2 + n + n - n 2  

= n(n - l ) (n  - 3) 

Notice that in the expansion of the symmetry operators those 
graphs with an odd number of crossings give an even power of 
n ,  and vice versa. Furthermore, if we change all three anti- 
symmetrizers to symmetrizers the terms which change sign are 
exactly those with an even number of crossings. The two facts 
show that combining the symmetry-antisymmetry exchange 
with the replacement of n by - n only has the effect of chang- 
ing the overall sign of the 9 - j coefficient. This is in agreement 
with our claim, because the overall sign is only a matter of con- 
vention (it depends on whether we choose to flip two lines 
entering an antisymmetrizer in the original graph or not). The 
crossing in the original graph, unconnected with any symmetry 
operator, also appears in every term in the expansion, and thus 
does not play any r61e in the argument. 

We now present the proof for the general SU (n)  case. Con- 
sider the graph corresponding to an arbitrary SU (n)  scalar, and 
choose any two terms from the collection obtained by expand- 
ing all its symmetry operators. These two graphs can differ only 
insofar as they come from different terms in the expansion of 
symmetry operators, so if one graph has AC crossings more than 
the other then, upon exchanging symmetry and antisymmetry, 
the change in the relative sign of the graphs is (-)*‘. Each 
graph consists only of closed loops, i.e., a definite power of 
n ,  and thus uncrossing two lines can have one of two conse- 
quences. If the two crossed line segments came from the same 
loop then uncrossing them splits this into two loops, whereas 
if they came from two loops it joins them into one loop: the 
power of n is therefore changed by f 1 by uncrossing one pair 
of crossed line segments. 

(4.4) 
1 - _ -  
n 

For any SO (n)  scalar, there is a corresponding Sp (n) scalar 
(for even n only, of course) obtained by exchanging symmetri- 
zers and antisymmetrizers and g,’s and f,’s in the correspond- 
ing graphs. The proof that these two scalars are transformed 
into each other by replacing n by - n (up to an arbitrary overall 
sigh) is now the same as for SU (n),  except that the two line 
segments at a crossing could come from one new kind of loop 
containingg,,’~ or f,’s. The required generalization of eq. (4.4) 
is then 

which shows that while uncrossing the lines does not change 
the number of loops, changing gMv’s to f,,’s does provide the 
necessary minus sign. 

5 ,  Racah coefficients 

In Section 3 we have computed the 6 - j  coefficients for fully 
symmetric representations of Sp (n). Sp (2) plays a special r61e 
here; the skew symmetric invariant f p u  has only one indepen- 
dent component and it must be proportional to P”. Hence 
Sp (2) 3 SU (2). For SU (2) all representations are fully sym- 
metric (Young tableaux consist of a single row), and our 6 - j ’s  
are all the 6 - j ’s  needed for computing SU (2) SO (3) group 
theoretic factors.* Hence all the Racah and Wiper coefficients 
familiar from the atomic physics are special cases of our spinor/ 
spinster 6 - j ’s. 

Wigner’s 3 - j symbol [ 141 

is really a Clebsch-Gordon coefficient with our 3 - j as a 
normalization factor. This may be expressed more simply in 

The ratio of our two graphs must, therefore, be an even power 
of n if AC is even, and an odd power of n if AC is odd. We con- 
clude that the ratio of the graphs is unchanged under the simul- 
taneous exchange of symmetry and antisymmetry and replace- 
ment of n by - n.  

The proof for SO (n)  is essentially the same. SO (n)  differs 
from SU (n) by the existence of the symmetric bilinear invariant 
tensor g,. Instead of using this to eliminate the arrows from 
lines, as we did previously, we shall now write it and its inverse 
as open circles 

(4.5) 

Such open circles can also occur in 3n - j graphs; the Levi- 
Civita tensor still cannot, as directed lines starting on an E 

tensor would have to  end on ag ,  which gives zero by symmetry. 
Sp (n) differs from SU(n) by having an additional skew- 

symmetric bilinear invariant tensor fuu , denoted diagrammatic- 

diagramatic form 
. phase 2 j l  

where we have not specified the phase convention on the right- 
hand side as, in the calculation of physical quantities, such 
phases cancel. Factors of 2 appear because our integers a, b,  . . . 
= 1, 2, . . . count the numbers of SU ( 2 )  2-dimensional repre- 
sentations (SO (3) spinors), while the usual j , ,  j z  , . . . = 4 ,  1, 
3, . . . labels correspond to SO (3) angular momenta. 

It is easy to verify (up to a sign) the completeness and ortho- 
gonality properties of Wigner’s 3 - j symbols 

- - 
* More pedantically, SU (2) =. spin (3) 2 SO (3) .  
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constructed from tensor invariants, SO (- n)  N Sp (n). (Various 
examples of such relations cited in literature are all special cases 
of our theorem,) This theorem is based on elementary proper- 
ties of permutations, and establishes the equivalence between 
6 - j coefficients for SO (- n)  and Sp (n)  without reference 
to spinsters or any other Grassmann extensions. 

Nevertheless, we hope that the spinsters are the natural 
supersymmetric extension of spinors, and that they might 

- N be of interest for superfield formulations of supersymmetric 
(5.3) field theories. They do not appear in the usual classifications, 

because they are infinite dimensional representations. However, 
they are not as unfamiliar as they might seem; if we write the 
Grassmannian ymatrices for Sp (20) as yp = bl, p ,  , . . . p, , 
xl, x2 .  . . x,) and choose fCw of form 

J, M 

- am1 mi am2 mi  
2j2  

(;l i2 J )  (i’ 12 J’) 
m1 ma m2 M m, m, M’ 

f = (-: ;) 
the defining commutator relation (3.2) is like the Heisenberg 
algebra except for a missing factor of i, 

(5.4) b i , x j l  = Q i, j = 1 ,2 , .  . . w (6.2) 

The expression (3.24) for our 3 - j coefficient with n = 2 
gives the expression usually written as A in Racah’s formula 

It is well known that Heisenberg algebras have infinite dimen- 
sional representations, SO the infinite dimensionality of Spinsters 
is no surprise. If we include an extra factor of i into the defini- 
tion of the “momenta” above we fmde that spinsters resemble 
an antiunitary Grassmann-valued representation of the usual 
Heisenberg algebra. If there is any significance in these observa- 
tions, which is not clear, it is intriguing to consider the relation- 
ship between superspace and the spinorlspinster representations 
of the orthosymplectic groups. 

Appendix A. Completeness of the r tensor basis 

We need to establish the relation (2.4) which we used to demon- 
j 3 )  = d m  @ (5.6) strate the completeness of the basis tensors I?(”). We shall set 

out to prove (2.4) using only the defining anticommutation k3 2k3  2k3 

relation (2.2). As the following identity holds 

for ( A  5 ;I, 
( j  + k + l .+ l)! -- 

( + k - 0 ! (k + I - j )  ! (1 + - k )  ! 

(5 5 )  

Wigner’s 6 - j coefficients are the same as ours, except that the 
3-vertices are normalized as in eq. (5.2) 

[ i: 
2kl 

which gives Racah’s formula using eq. (3.25) with n = 2 

j + k 4  - (4 
1 

A(i,  k, 0 

1 2k2 2k3 

2 3  

1” iz 2\ = [ ~ ~ i l ~ z k 3 ~ ~ ~ ~ l ~ z ~ 3 ~ ~ ~ k l ~ , ~ 3 ~ ~ ~ i l ~ ~ ~ 3 ~ 1 1 ’ z  4- 
kl k, 3 
I I 

6.  Conclusions 

The main practical result of this paper is a complete algorithm 
for the evaluation of spinor traces in n-dimensions. We believe 
this algorithm to be the most efficient algorithm available, in 
the sense that the usual algorithm (2.9) requires (2p - l)!! 
evaluation steps, while the present algorithm requires only 
about p 2  steps. (The Kahne [15] algorithm applies only for 
n = 4.) 

The most interesting question raised by this paper is what 
are spinsters? A sceptic would answer that they are merely a 
trick for relating SO (n) antisymmetric representations to Sp ( n )  
symmetric representations. That can be achieved without 
spinsters: indeed, Penrose [2, 71 had observed already some 29 
years ago that SO (- 2) yields Racah coefficients in a much 
more elegant manner than the usual angular momentum manip- 
ulations. In this paper we have also proved that for any scalar 
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we may make the decomposition 
a*l b 

where O1,+1 = - 01, + (-)“/b. This recurrence relation has the 
solution 01, = (-)” (ao -a,%), so that taking a0 = 1 we have 
(Yb = 0. This means eq. (A.2) may be iterrated to give 

b 

= 8- + (b-1) 
4 4-- 

(A.3) 

as desired. The corresponding relation for spinsters may be 
derived in the same way. 
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Appendix B. Trace of an odd number of y matrices 

be reduced to a sum of terms involving gw’s and the anti- 
symmetric basis tensors I’@), so it suffices to consider the trace 
of such tensors for odd values of a. This may be done as follows: The terms of the latter type all vanish 

(C.2) We have shown in Appendix A that any y-matrix product may v 

Now one 
stares* at the terms of first type and writes down the following 

(C.3) 

(B.J) C+;+J factor counts the number of ways of colouring s + t + U 
lines with n different colours. The second factor counts the 

.-.‘ number of distinct partitions of s + t + U lines into three 
where we have made use of the relation (2.7) and the fact that strands with S, t and U lines respectively. The last factor is due 
a is odd in fie third step. The result shows that tr r(a) vanishes to the projector operator normalization for the antisymmetriza- 
for all odd a # n ,  and hence that in even dimensions all traces tion Operator (2.3) and the fact that a strand Of W lines may be 
of an odd number of y.matrices must vanish, just as was pro- coloured W ! different Ways with W COlOUrS. It Cancels against 
mi& earlier. In odd dimensions the situation is a little more the corresponding factor in eq. (c.1). The value ofthe 31 coef- 
complicated, as tr I’(n) does not vanish in general. It is easy to ficient is 
see why this is so, for we can construct the (pseudo) scalar 
quantity y* (the n-dimensional analogue of y5), 1 n !  

(C .4) s !  t !U ! (n - s - t -U)! ,A. 
I 1, 

(B.2) 
4- m-- O= 4- &- 

y* = E A ’ i .  .Pn 
...’Yfin 

which commutes with all the 7-matrices for n odd. It follows by 
Schur’s lemma that y* must be a multiple of the unit matrix 
and hence is not traceless. 

For spinsters the argument is quite similar: 

The strand-network expression for a 6 j  coefficient is 

Pick out a line in a strand, and follow its possible routes through 
the strand network. Seven types of terms give non-vanishing 
contributions: four “mini tours” 

which in this case implies that all traces of an odd number of 
7-matrices must vanish for all (positive) values of n. 

Appendix C. Evaluation of 3n - j coefficients for spinors 

Let the numbers of lines in different tours be t i ,  t 2 ,  t 3 ,  t 4 ,  t 5 ,  
t6 and t 7 .  

A non-vanishing contribution to the 6 - j coefficient (C.5) 
corresponds to a partition of twelve strands s,, s 2 ,  . , . , s , ~  into 
seven tours t , ,  t 2 ,  . . . , t ,  

Substituting eqs. (2.15), (2.13) and (2.11) into the definition 
of the 3 - j coefficient leads to a strand-network [7] expression 

- a! b! c !  - 
I s !  t !  U!? 

s = Jj(b+c-a) t = f ( c + a - b )  U = $ ( a + b - c )  

Pick out a line in a strand (let us say the lower t strand) and 
follow it through antisymmetrizations. It can either complete a 
loop, or end on an antisymmetrizer 

W , )  = 

Comparing with eq. (C.5) we see that each si is a sum of two 
t i .  s1 = t2  + t 7 ,  s2 = t ,  + t 7 ,  etc. It is sufficient to specify one 
* A well-known theorem states that combinatorial factors are impossible 
- 

to explain [ 161. 
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tl ; this fixes all ti's. Now, just as for eq. (C.3), one stares at the 
above figure and writes down 

t = t l + t 2 +  . . .+  t7  

The (7) factor counts the number of ways of colouring t l  + 
t2  + . , . + c,  lines with n different colours. The second factor 
counts the number of distinct partitions of r lines into seven 
strands t l ,  t2 , . . . , t ,  . The last factor again comes from the pro- 
jector operator normalizations (2.3) and the number of ways of 
colouring each strand, and cancels against the corresponding fac- 
tor in eq. (C.5). Summing over the allowed partitions (for 
example, taking 0 < t ,  < s2)  we obtain the 6 j  expression (2.26). 

Appendix D. Evaluation of 3n - j  coefficients for spinsters 

Substituting eqs. (3.15), (3.17) and (3.18) into the definition 
of the 3 - j coefficient yields 

a!  b !  c!  
(s! t !  U!]* 

s = $ ( b + c - a )  t = $ ( c + a - b )  U = $ ( a + b - c )  

Again, those 
vanishing con 
them), and all 

strands which pass a symmetrizer twice give a 
tribution (they have an odd number of warts on 
contributions come from loops of the type 

metric colourings of s + t + U lines. The resulting 3 - j  is given 
in eq. (3.24). 

The 6 - j  coefficient is evaluated in the same way as in the 
Appendix C, except that all antisymmetrizations are replaced 
by symmetrizations, and each strand consists of fp tensors. 
There are again 7 tours, and it can be checked that f p ' s  along 
each tour give rise to factors of - n  by eq. (3.4). The number 
of coulourings in eq. (C.9) gets replaced by the number of 
symmetric colourings 

The resulting 6 - j  is given in eq. (3.25). 
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