ASIC GROUP-THEORETIC NOTIONS are recapitulated here: groups, irreducible representations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant matrices. The basic idea is simple: a hermitian matrix can be diagonalized. If this matrix is an invariant matrix, it decomposes the reps of the group into direct sums of lower-dimensional reps. Most of computations to follow implement the spectral decomposition

$$\mathbf{M} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2 + \cdots + \lambda_r \mathbf{P}_r,$$

which associates with each distinct root λ_i of invariant matrix **M** a projection operator (A10.20):

$$\mathbf{P}_i = \prod_{j \neq i} \frac{\mathbf{M} - \lambda_j \mathbf{1}}{\lambda_i - \lambda_j}.$$

1.5 Eigenvalues and eigenvectors

What is a matrix?

—Werner Heisenberg (1925)
What is the matrix?

—Keanu Reeves (1999)

Eigenvalues of a $[d \times d]$ matrix M are the roots of its characteristic polynomial

$$\det(\mathbf{M} - \lambda \mathbf{1}) = \prod (\lambda_i - \lambda) = 0.$$
 (1.27)

Given a nonsingular matrix \mathbf{M} , with all $\lambda_i \neq 0$, acting on d-dimensional vectors \mathbf{x} , we would like to determine *eigenvectors* $\mathbf{e}^{(i)}$ of \mathbf{M} on which \mathbf{M} acts by scalar multiplication by eigenvalue λ_i

$$\mathbf{M} \mathbf{e}^{(i)} = \lambda_i \mathbf{e}^{(i)} \,. \tag{1.28}$$

If $\lambda_i \neq \lambda_j$, $\mathbf{e}^{(i)}$ and $\mathbf{e}^{(j)}$ are linearly independent. There are at most d distinct eigenvalues which we order by their real parts, $\operatorname{Re} \lambda_i \geq \operatorname{Re} \lambda_{i+1}$.

If all eigenvalues are distinct, $e^{(j)}$ are d linearly independent vectors which can be used as a (non-orthogonal) basis for any d-dimensional vector $\mathbf{x} \in \mathbb{R}^d$

$$\mathbf{x} = x_1 \,\mathbf{e}^{(1)} + x_2 \,\mathbf{e}^{(2)} + \dots + x_d \,\mathbf{e}^{(d)} \,. \tag{1.29}$$

However, r, the number of distinct eigenvalues, is in general smaller than the dimension of the matrix, $r \leq d$ (see example 1.3).

From (1.28) it follows that

$$(\mathbf{M} - \lambda_i \mathbf{1}) \mathbf{e}^{(j)} = (\lambda_j - \lambda_i) \mathbf{e}^{(j)},$$

matrix $(\mathbf{M} - \lambda_i \mathbf{1})$ annihilates $\mathbf{e}^{(i)}$, thus the product of all such factors annihilates any vector, and the matrix \mathbf{M} satisfies its characteristic equation

$$\prod_{i=1}^{d} (\mathbf{M} - \lambda_i \mathbf{1}) = 0. \tag{1.30}$$

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from this product, we find that the remainder projects x from (1.29) onto the corresponding eigenspace:

$$\prod_{j\neq i} (\mathbf{M} - \lambda_j \mathbf{1}) \mathbf{x} = \prod_{j\neq i} (\lambda_i - \lambda_j) x_i \mathbf{e}^{(i)}.$$

Dividing through by the $(\lambda_i - \lambda_j)$ factors yields the projection operators

$$\mathbf{P}_i = \prod_{j \neq i} \frac{\mathbf{M} - \lambda_j \mathbf{1}}{\lambda_i - \lambda_j},\tag{1.31}$$

which are orthogonal and complete:

$$\mathbf{P}_i \mathbf{P}_j = \delta_{ij} \mathbf{P}_j$$
, (no sum on j), $\sum_{i=1}^r \mathbf{P}_i = \mathbf{1}$, (1.32)

with the dimension of the *i*th subspace given by $d_i = \operatorname{tr} \mathbf{P}_i$. For each distinct eigenvalue λ_i of \mathbf{M} ,

$$(\mathbf{M} - \lambda_i \mathbf{1}) \mathbf{P}_i = \mathbf{P}_i (\mathbf{M} - \lambda_i \mathbf{1}) = 0, \qquad (1.33)$$

the colums/rows of P_j are the right/left eigenvectors $e^{(j)}$, $e_{(j)}$ of M which (provided M is not of Jordan type) span the corresponding linearized subspace.

The main take-home is that once the distinct non-zero eigenvalues $\{\lambda_i\}$ are computed, projection operators are polynomials in M which need no further diagonalizations or orthogonalizations.

It follows from the characteristic equation (1.33) that λ_i is the eigenvalue of M on P_i subspace:

$$\mathbf{M}\,\mathbf{P}_i = \lambda_i \mathbf{P}_i \qquad \text{(no sum on } i\text{)}\,. \tag{1.34}$$

Using M = M1 and completeness relation (1.32) we can rewrite M as

$$\mathbf{M} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2 + \dots + \lambda_d \mathbf{P}_d. \tag{1.35}$$

Any matrix function $f(\mathbf{M})$ takes the scalar value $f(\lambda_i)$ on the \mathbf{P}_i subspace, $f(\mathbf{M}) \mathbf{P}_i = f(\lambda_i) \mathbf{P}_i$, and is thus easily evaluated through its *spectral decomposition*

$$f(\mathbf{M}) = \sum_{i} f(\lambda_i) \mathbf{P}_i. \tag{1.36}$$

This, of course, is the reason why anyone but a fool works with irreducible reps: they reduce matrix (AKA "operator") evaluations to manipulations with numbers.

By (1.33) every column of P_i is proportional to a right eigenvector $e^{(i)}$, and its every row to a left eigenvector $e_{(i)}$. In general, neither set is orthogonal, but by the idempotence condition (1.32), they are mutually orthogonal,

$$\mathbf{e}_{(i)} \cdot \mathbf{e}^{(j)} = c_j \, \delta_i^j \,. \tag{1.37}$$

The non-zero constant c_j is convention dependent and not worth fixing, unless you feel nostalgic about Clebsch-Gordan coefficients. We shall set $c_j = 1$. Then it is convenient to collect all left and right eigenvectors into a single matrix.

A10.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann Weyl on the "so-called first main theorem of invariant theory": ⁵

"All invariants are expressible in terms of a finite number among them. We cannot claim its validity for every group G; rather, it will be our chief task to investigate for each particular group whether a finite integrity basis exists or not; the answer, to be sure, will turn out affirmative in the most important cases."

It is easy to show that any rep of a finite group can be brought to unitary form, and the same is true of all compact Lie groups. Hence, in what follows, we specialize to unitary and hermitian matrices.

A10.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

Here $\lambda_i \neq \lambda_j$ are the *r* distinct roots of the minimal *characteristic* (or *secular*) polynomial

$$\prod_{i=1}^{r} (\mathbf{M} - \lambda_i \mathbf{1}) = 0. \tag{A10.19}$$

In the matrix $C(M - \lambda_2 1)C^{\dagger}$ the eigenvalues corresponding to λ_2 are replaced by zeroes:

$$\begin{bmatrix}
\lambda_1 - \lambda_2 \\
\lambda_1 - \lambda_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
& \ddots \\
& & 0
\end{bmatrix}$$

$$\lambda_3 - \lambda_2$$

$$\lambda_3 - \lambda_2$$

$$& \ddots$$

and so on, so the product over all factors $(\mathbf{M} - \lambda_2 \mathbf{1})(\mathbf{M} - \lambda_3 \mathbf{1})\dots$, with exception of the $(\mathbf{M} - \lambda_1 \mathbf{1})$ factor, has nonzero entries only in the subspace associated with λ_1 :

$$\mathbf{C} \prod_{j \neq 1} (\mathbf{M} - \lambda_j \mathbf{1}) \mathbf{C}^{\dagger} = \prod_{j \neq 1} (\lambda_1 - \lambda_j) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & 0 \\ 0 & 0 & 0 \\ & & & \ddots \end{bmatrix}.$$

Thus we can associate with each distinct root λ_i a projection operator \mathbf{P}_i ,

$$\mathbf{P}_i = \prod_{j \neq i} \frac{\mathbf{M} - \lambda_j \mathbf{1}}{\lambda_i - \lambda_j},\tag{A10.20}$$

which acts as identity on the *i*th subspace, and zero elsewhere. For example, the projection operator onto the λ_1 subspace is

$$\mathbf{P}_{1} = \mathbf{C}^{\dagger} \begin{bmatrix} 1 & & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{bmatrix} \mathbf{C} . \tag{A10.21}$$

The diagonalization matrix C is deployed in the above only as a pedagogical device. The whole point of the projector operator formalism is that we *never* need to carry such explicit diagonalization; all we need are whatever invariant matrices M we find convenient, the algebraic relations they satisfy, and orthonormality and completeness of P_i : The matrices P_i are *orthogonal*

$$\mathbf{P}_i \mathbf{P}_j = \delta_{ij} \mathbf{P}_j$$
, (no sum on j), (A10.22)

and satisfy the completeness relation

$$\sum_{i=1}^{r} \mathbf{P}_i = \mathbf{1}. \tag{A10.23}$$

As tr $(\mathbf{CP}_i\mathbf{C}^{\dagger})$ = tr \mathbf{P}_i , the dimension of the *i*th subspace is given by

$$d_i = \operatorname{tr} \mathbf{P}_i. \tag{A10.24}$$

It follows from the characteristic equation (A10.19) and the form of the projection operator (A10.20) that λ_i is the eigenvalue of **M** on **P**_i subspace:

$$\mathbf{MP}_i = \lambda_i \mathbf{P}_i$$
, (no sum on i). (A10.25)

Hence, any matrix polynomial $f(\mathbf{M})$ takes the scalar value $f(\lambda_i)$ on the \mathbf{P}_i subspace

$$f(\mathbf{M})\mathbf{P}_i = f(\lambda_i)\mathbf{P}_i. \tag{A10.26}$$

This, of course, is the reason why one wants to work with irreducible reps: they reduce matrices and "operators" to pure numbers.

A10.2.2 Irreducible representations

$$[\mathbf{M}_1, \mathbf{M}_2] = 0, \tag{A10.27}$$

or, equivalently, if projection operators P_j constructed from M_2 commute with projection operators P_i constructed from M_1 ,

$$\mathbf{P}_i \mathbf{P}_j = \mathbf{P}_j \mathbf{P}_i \,. \tag{A10.28}$$

Usually the simplest choices of independent invariant matrices do not commute. In that case, the projection operators P_i constructed from M_1 can be used to project commuting pieces of M_2 :

$$\mathbf{M}_2^{(i)} = \mathbf{P}_i \mathbf{M}_2 \mathbf{P}_i$$
, (no sum on i).

That $\mathbf{M}_2^{(i)}$ commutes with \mathbf{M}_1 follows from the orthogonality of \mathbf{P}_i :

$$[\mathbf{M}_{2}^{(i)}, \mathbf{M}_{1}] = \sum_{i} \lambda_{j} [\mathbf{M}_{2}^{(i)}, \mathbf{P}_{j}] = 0.$$
 (A10.29)

Now the characteristic equation for $\mathbf{M}_2^{(i)}$ (if nontrivial) can be used to decompose V_i subspace.

An invariant matrix **M** induces a decomposition only if its diagonalized form (A10.18) has more than one distinct eigenvalue; otherwise it is proportional to the unit matrix and commutes trivially with all group elements. A rep is said to be *irreducible* if all invariant matrices that can be constructed are proportional to the unit matrix.