
1.5 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M− λ1) =
∏

(λi − λ) = 0 . (1.27)

Given a nonsingular matrix M, with all λi 6= 0, acting on d-dimensional vectors x, we
would like to determine eigenvectors e(i) of M on which M acts by scalar multiplica-
tion by eigenvalue λi

Me(i) = λie
(i) . (1.28)

If λi 6= λj , e(i) and e(j) are linearly independent. There are at most d distinct eigen-
values which we order by their real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct, e(j) are d linearly independent vectors which can be
used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e
(1) + x2 e

(2) + · · ·+ xd e
(d) . (1.29)

However, r, the number of distinct eigenvalues, is in general smaller than the dimension
of the matrix, r ≤ d (see example 1.3).

From (1.28) it follows that

(M− λi1) e(j) = (λj − λi) e(j) ,
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What is a matrix?
—Werner Heisenberg (1925)

What is the matrix?
—-Keanu Reeves (1999)

Basic group-theoretic notions are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant ma-
trices. The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct sums
of lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct root λi of invariant matrix M a projection
operator (A10.20):

Pi =
∏
j,i

M − λ j1
λi − λ j

.



matrix (M− λi1) annihilates e(i), thus the product of all such factors annihilates any
vector, and the matrix M satisfies its characteristic equation

d∏
i=1

(M− λi1) = 0 . (1.30)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from
this product, we find that the remainder projects x from (1.29) onto the corresponding
eigenspace: ∏

j 6=i

(M− λj1)x =
∏
j 6=i

(λi − λj)xie(i) .

Dividing through by the (λi − λj) factors yields the projection operators

Pi =
∏
j 6=i

M− λj1
λi − λj

, (1.31)

which are orthogonal and complete:

PiPj = δijPj , (no sum on j) ,
r∑
i=1

Pi = 1 , (1.32)

with the dimension of the ith subspace given by di = trPi . For each distinct eigen-
value λi of M,

(M− λj1)Pj = Pj(M− λj1) = 0 , (1.33)

the colums/rows of Pj are the right/left eigenvectors e(j), e(j) of M which (provided 
M is not of Jordan type) span the corresponding linearized subspace.

The main take-home is that once the distinct non-zero eigenvalues {λi} are com-
puted, projection operators are polynomials in M which need no further diagonaliza-
tions or orthogonalizations.

It follows from the characteristic equation (1.33) that λi is the eigenvalue of M on 
Pi subspace:

MPi = λiPi (no sum on i) . (1.34)

Using M = M1 and completeness relation (1.32) we can rewrite M as

M = λ1P1 + λ2P2 + · · ·+ λdPd . (1.35)

Any matrix function f(M) takes the scalar value f(λi) on the Pi subspace, f(M)Pi =
f(λi)Pi , and is thus easily evaluated through its spectral decomposition

f(M) =
∑
i

f(λi)Pi . (1.36)

This, of course, is the reason why anyone but a fool works with irreducible reps: they
reduce matrix (AKA “operator”) evaluations to manipulations with numbers.
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By (1.33) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (1.32), they are mutually orthogonal,

e(i) · e(j) = cj δ
j
i . (1.37)

The non-zero constant cj is convention dependent and not worth fixing, unless you feel 
nostalgic about Clebsch-Gordan coefficients. We shall set c j = 1. Then it is convenient 
to collect all left and right eigenvectors into a single matrix.
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A10.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann 
Weyl on the “so-called first main theorem of invariant theory”: 5

“All invariants are expressible in terms of a finite number among them. We 
cannot claim its validity for every group G; rather, it will be our chief task to 
investigate for each particular group whether a finite integrity basis exists or not; 
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought to unitary 
form, and the same is true of all compact Lie groups. Hence, in what follows, we 
specialize to unitary and hermitian matrices.
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A10.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC† =



λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .



. (A10.18)

Here λi , λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (A10.19)

In the matrix C(M − λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:

λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .


,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j,1

(M − λ j1)C† =
∏
j,1

(λ1 − λ j)



1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .


.

Thus we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j,i

M − λ j1
λi − λ j

, (A10.20)

appendFiniteGr - 30dec2017 boyscout edition16.2, Feb 19 2019



A10.2. INVARIANTS AND REDUCIBILITY 1121

which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†



1
. . .

1
0

0
. . .

0


C . (A10.21)

The diagonalization matrix C is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism is that we never need
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness of Pi: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (A10.22)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (A10.23)

As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (A10.24)

It follows from the characteristic equation (A10.19) and the form of the projection
operator (A10.20) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (A10.25)

Hence, any matrix polynomial f (M) takes the scalar value f (λi) on the Pi sub-
space

f (M)Pi = f (λi)Pi . (A10.26)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

A10.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have used M1 to decompose the d-dimensional vector
space V = V1 ⊕ V2 ⊕ · · · . Can M2,M3, . . . be used to further decompose Vi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (A10.27)
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or, equivalently, if projection operators P j constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (A10.28)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λ j[M(i)
2 ,P j] = 0 . (A10.29)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.

An invariant matrix M induces a decomposition only if its diagonalized form 
(A10.18) has more than one distinct eigenvalue; otherwise it is proportional to the 
unit matrix and commutes trivially with all group elements. A rep is said to be 
irreducible if all invariant matrices that can be constructed are proportional to the 
unit matrix.
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