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4.2 Multiplet bases

For the construction of a multiplet basis for c ∈ (V ⊗ V )⊗nq ⊗ A⊗ng we consider c as a linear map, 
say

c : (V ⊗ V )⊗kq ⊗ A⊗kg → (V ⊗ V )⊗(nq−kq) ⊗ A⊗(ng−kg ) , (88)

for some 0 ≤ kq ≤ nq and 0 ≤ kg ≤ ng . In general, we thus have a linear map c : W1 → W2,
between two vector spaces, carrying representations Γ1 and Γ2 of SU(N). Moreover, c being
an invariant tensor means that

c ◦ Γ1(g) = Γ2(g) ◦ c ∀ g ∈ SU(N) . (89)

Now we are in a situation where we can employ Schur’s lemma. It is often formulated for the
case where W1 and W2 carry irreducible representations saying that

• if the two representations are inequivalent, then c vanishes identically, and

• if the two representations are equivalent and W1 =W2, then c is a multiple of the identity.

In our case the representations are typically not irreducible, and then Schur’s lemma implies
that c can only map subspaces onto each other that carry the same irreducible representation,
i.e. c maps only equivalent multiplets onto each other.

Now consider the case when W1 = W2 =: W . If we decompose W into multiplets, i.e.
into irreducible SU(N)-invariant subspaces, then the projectors onto these multiplets are dis-
tinguished elements of colour space.
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Number of multiplets Dimension of colour space
N = 3 N =∞ N = 3 N =∞

A⊗2→ A⊗2 6 7 8 9
A⊗3→ A⊗3 29 51 145 265
A⊗4→ A⊗4 166 513 3 598 14 833
A⊗5→ A⊗5 1 002 6 345 107 160 1 334 961

Table 1: Number of projection operators and dimension of the colour space within A⊗(2n),
for colour structures viewed as maps A⊗n → A⊗n. The first two columns show the number
of multiplets (counted with multiplicities) in the decomposition of A⊗n, both for N = 3 and
for N ≥ n. The last two columns contain the dimensions of the respective colour spaces; the
dimension in the last column is also equal to the number of elements of the corresponding
trace basis.

• If each multiplet appears only once in the decomposition of W then the projectors form
a basis of colour base. If, moreover, the projectors are Hermitian, then this basis is
orthogonal.

• If some multiplets in the decomposition of W have a multiplicity > 1 then we have
to complement the projectors with operators mapping equivalent multiplets onto each
other.

In practice, finding the multiplets in the decomposition of W and their multiplicities can, e.g.,
be done by multiplying Young diagrams according to the standard rules. The crucial step
is then to find Hermitian projectors onto these multiplets. Finally, multiplet bases can be
constructed straightforwardly from Hermitian projection operators.

In the following sections we discuss how to construct Hermitian projection operators as
well as multiplet bases for the cases V⊗n → V⊗n and A⊗n → A⊗n. Moreover, we will see that
multiplet cases for any colour space can be constructed from projectors for A⊗n→ A⊗n.

Comparison

Trace bases are convenient since they are easy to construct and since there is a simple algo-
rithm for expanding arbitrary colour factors into a trace basis. In general, trace bases are
overcomplete, i.e. expansions tend to have too many terms. For instance, the trace basis for
the colour space within A⊗n is a proper basis if n≤ N but for n> N it is only a spanning set –
the basis vectors are linearly dependent. Trace bases, typically, are also non-orthogonal.

Constructing multiplet bases requires more work than constructing trace bases. In return
we obtain not only a proper basis, i.e. the basis vectors are linearly independent, but also an
orthogonal basis. Even though the dimension of colour space depends on N , the number of
colours, the birdtrack construction of multiplet bases can be carried out independently of N ,
and then for small N some basis vectors simply vanish.

The numbers in Table 1 give us an impression of the potential advantage of multiplet bases
over trace bases. Imagine doing a calculation for N = 3 with 6 to 10 external gluons involved.
Then the number of trace basis elements exceeds the dimension of colour space by, roughly,
a factor of 2 to 12. Expanding colour structures in a trace or multiplet basis and then, e.g.,
calculating scalar products will result in 4 to 144 times as many terms when using a trace basis
instead of a multiplet basis.

4.2 Multiplet bases for quarks

We first consider the case without external gluons, i.e. we are interested in the colour space
within (V ⊗ V )n. Tensors c ∈ (V ⊗ V )⊗n can be viewed as linear maps c : V⊗n → V⊗n, and
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Young operators YΘ project onto multiplets. Unfortunately, Young operators are in general not
Hermitian, as can be seen by, e.g. inspecting Eq. (74): Mirroring and reversing the arrows
does not yield back the original expression.

However, Hermitian operators PΘ corresponding to standard Young tableaux Θ can be
constructed. In [1] they are derived as solutions of certain characteristic equations. They can
also be written down directly starting from a Young tableaux as follows. Consider the sequence
of Young tableaux Θ j ∈ Y j obtained from Θ ∈ Yn by, step by step, removing the box with the
highest number, e.g., starting with Θ = Θ3 = 1 2

3
∈ Y3 we obtain

Θ1 = 1 , Θ2 = 1 2 , Θ3 = 1 2
3

. (90)

Young operators for n= 2 are Hermitian – they are just total (anti-)symmetrisers – so we set

PΘ j
= YΘ j

∀ j ≤ 2 . (91)

Then we define recursively

PΘ j
= (PΘ j−1

⊗1V )YΘ j
(PΘ j−1

⊗1V ) ∀ j ≥ 3 , (92)

i.e. in birdtrack notation we take the Young operator YΘ j
and write the Hermitian Young op-

erator PΘ j−1
over the first j−1 lines, to the left and to the right. For instance,

P
1 2
3

=
4
3

=
4
3

, (93)

which is manifestly Hermitian, and in birdtracks it is also easy to see that

tr P
1 2
3

= tr Y
1 2
3

(94)

since
� �2

= .
It can be shown [3] that the resulting PΘ not only project onto the correct multiplets but

that they are also Hermitian and thus mutually orthogonal with respect to the scalar prod-
uct (80). Furthermore, using the Hermitian Young operators PΘ automatically cures the loss
of transversality mentioned at the end of Sec. 3.2

The recursive construction can produce initially lengthy expressions which can often be
simplified considerably, see, e.g., the step-by-step example for 1 3 5

2 4
in the Appendix of [3].

Similar simplifications can be shown to occur much more generally [4] and they can be used
to devise a recipe for directly writing down fully simplified Hermitian Young operators [5].

With the Hermitian Young operators

P
1 2 3

= , P
1 2
3

=
4
3

, P
1 3
2

=
4
3

, P
1
2
3

= ,

(95)
we have completely decomposed V⊗3 into an orthogonal sum of multiplets. However, the PΘ
alone do not form a basis for the colour space within (V ⊗V )⊗3, since the multiplet appears
twice, i.e. we also need an operator mapping these two multiplets onto each other. To this end
we write down P

1 2
3

and P
1 3
2

next to each other (omitting prefactors),

, (96)
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and seek a way of connecting the lines within the dashed box such that the whole expression
does not vanish, because then it is guaranteed, that the resulting expression has the same
kernel as P

1 3
2

and the same image as P
1 2
3

. The only such connection (up to a sign) is

, (97)

and by expanding the central (anti-)symmetrisers one can verify that this expression is pro-
portional to

T1 := . (98)

Thus, we have found a basis vector mapping 1 3
2

to 1 2
3

. The vector for the reverse mapping
can be obtained in the same way and reads

T2 := . (99)

Exercise 18 Define

B = , (100)

and show that B2 is proportional to B by expanding the central (anti-)symmetrisers. Explain
why this implies that the birdtrack diagram (97) is proportional to T1.

The multiplet basis for V⊗3→ V⊗3 consisting of four Hermitian Young operators and two
transition operators is orthogonal. If desired the basis vectors can be normalised: For Hermi-
tian projection operators we generally have

〈PΘ, PΘ〉= tr(P†
ΘPΘ) = tr(PΘPΘ) = tr(PΘ) = dim MΘ (101)

where MΘ is the multiplet to which PΘ projects. Hence,

1p
dim MΘ

PΘ (102)

has norm one. The transition operators can straightforwardly be normalised by a direct calcu-
lation.

Exercise 19 Calculate 〈T1, T1〉 and normalise T1 accordingly.
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