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Chapter Six

Permutations

The simplest example of invariant tensors is the products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the sym-
metric groupsS,, the group of permutations @fobjects, enters into the theory of
tensor reps. In this chapter, | introduce birdtracks notation for permutations, sym-
metrizations and antisymmetrizations and collect a few results that will be useful
later on. These are the (anti)symmetrization expansion formélaé @nd 6.19,
Levi-Civita tensor relations5(28 and 6.30, the characteristic equations.§0),

and the invariance condition$ (64 and 6.56). The theory of Young tableaux (or
plethysms) is developed in chapter

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a[d x d] matrix:
0o = Ob e eger - (6.1)

7Cq...C2C1

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

. . ——
identity: 1,5, = 6965 =

——
flip: o (12)0, " = 0505 = > . (6.2)

For 3-index tensors, there are six permutations:

babab b1 sba ¢b
3bab1 _ §b1 b2 §b3 ¢
1111112113’ _5a15a26a3 -
——
b3baby _ sbo by sbz ><
0(12)a1a2a3a _50,15(126(13 -

———
0(23) TN O013) = ><

0(123):527 0(132) — % (6.3)

Subscripts refer to the standard permutation cycles notation. For the remainder of
this chapter we shall mostly omit the arrows on the Kronecker delta lines.
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The symmetric sum of all permutations,

ai -az2 az-ai

5 = %E:%{—+><+%+} (6.

yields the symmetrization operat®rin birdtrack notation, a white bar drawn across
p lines will always denote symmetrization of the lines crossed. A factoy pfhas
been introduced in order fdf to satisfy the projection operator normalization

EE-=E

A subset of indices, as, ... aq, ¢ < p can be symmetrized by symmetrization
matrix Si2.. 4

1
Suran..a o b2t = {5b1 gb2 ”'521; 1 gbigbe ”.521; T }

bp...bg...bab
(812...q)a1a2...aq...ap7 proPa P2 =

1
- {5b15b2 o 80 g gt L g 4 ---}53?,11---5’7?

ai a2
q!

1
- 2
512...q:iEq. (6.6)

Overall symmetrization also symmetrizes any subset of indices:

SS12..4=8

(6.7)

Any permutation has eigenvaliieon the symmetric tensor space:

cS=S58

EE

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition 6.4) of the symmetrization operator as the sum opafpermuta-
tions is inconvenient for explicit calculations; a recursive definition is more useful:

1
bp...bab b bp...b b bp...b
Sauzz...apa PRl = — {5,& Saz...apa P2 +5a;Sa1a3...apv Pt 4 }

S:

%E_

(1+0@1) +0@E21) + -+ 0(p...321)) S23..p

(FEZEXE ) e

R"V= "B
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which involves onlyp terms. This equation says that if we start with the first index,
we end up either with the first index, or the second index and so on. The remaining
indices are fully symmetric. Multiplying byss . .. p from the left, we obtain an
even more compact recursion relation with two terms only:

%E = % <iE +(p— 1)%) : (6.10)

As a simple application, consider computation of a contraction of a single pair of

indices:
ol o]
1 p -

n+p—1
Sapap—l ..aq ablmbpilap - TS“PH ..a1 7b1...bp,1 . (6.11)

For a contraction irfp — k) pairs of indices, we have

_ (ntp— ! . (6.12)

(n+k—1) k—

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

dstrS@ ”“’1@ "+p1 . (6.13)
(=

For example, for 2-index symmetric tensors,

ds =n(n+1)/2. (6.14)

6.2 ANTISYMMETRIZATION

The alternating sum of all permutations,

1
Auran..a, Lrebats == {5b15b2 R X RO L }

ay-a2 az-ai

_><+%_} (6.15)
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yields the antisymmetrization projection operaftioin birdtrack notation, antisym-
metrization ofp lines will always be denoted by a black bar drawn across the lines.
As in the previous section

A’=A
S
and in addition
SA=0

i

A transposition has eigenvaluel on the antisymmetric tensor space

3

(i 1+1)A_

s =

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of—1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

= SHE S S o
:%{EE_@_”ﬁ}' 6.19)

This is useful for computing contractions such as

o i _n— p—|—1
2 T
1

n— p—|—1
aap 1. 1a bp—ra — D ap 1- 17 by . (620)

The number of independent components of fully antisymmetric tensors is given by

da—tr A — _n—p+ln—p+2 n
A= = = D pfl 7

:nilu nz>p
— (n—p)! ) (6.21)
0, n<p
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For example, for 2-index antisymmetric tensors the number of independent compo-
nents is

n(n—1) .
2

da = (6.22)

Tracing(p — k) pairs of indices yields

(6.23)

The antisymmetrization tensdr,, .. ,’»*?2?* has nonvanishing components, only
if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tenddras no nonvanishing components:

1
?EE =0 ifp>n. (6.24)
p

This identity implies that fop > n, not all combinations gf Kronecker deltas are
linearly independent. A typical relation is the= n + 1 case

0= H = H - LH +u H - (6.25)
For example, fon = 2 we have
XXX X o

0=0/056e — §16c68 — o] 6269 + 51 6¢6e + 61 oca — 615567 .

bYa"c bYcYa

f e d

n=2: 0=

6.3 LEVI-CIVITA TENSOR

An antisymmetric tensor, with indices in defining dimension, has only one
independent component,( = 1 by (6.21)). The clebschesi(17) are in this case
proportional to thd_evi-Civita tensor

a1
al
(Ca)ayay..a, s =Céaras...a, = %ﬂ , (6.27)

with e!?+" = ¢, _,, = 1. This diagrammatic notation for the Levi-Civita tensor was
introduced by Penrosé§1]. The normalization factor§’ are physically irrelevant.
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They adjust the phase and the overall normalization in order that the Levi-Civita
tensors satisfy the projection operatérl(® and orthonormality4.19 conditions:

1
N!

ai1as...ayn __ a,...a2a1
— €y by by € " =Ap by b

%ealazmane“l“?“'“":611 =1, ﬁ =1. (6.28)

With our conventions,
Z'n(nfl)/Q

V!
The phase factor arises from the hermiticity conditiéri g for clebsches (remem-
ber that indices are always read in the counterclockwise order around a diagram),

EE

7 €aras...an — 1 €ay,...a2a1 -

Transposing the indices

(6.29)

€aiasz...an, — “Cazai...a, — -+ = (

yields ¢ = n(n — 1)/2. The factorl/v/n! is needed for the projection operator
normalization 8.50.
Givenn dimensions we cannot label more thamdices, so Levi-Civita tensors

satisfy
fhiag o

_1)n(n—1)/2

Ean,...a2a1 )

12 3n4d
For example, for
n=2: 0:+ﬁ_{,ﬁ+rh
0=0%pe — 0d€qe + 6%€qp . (6.31)

This is actually the same as the completeness rela@d8( as can be seen by
contracting 6.31) with €., and using

b

€ac€’® (6.32)

This relation is one of a series of relations obtained by contracting indices in the
completeness relatios 28 and substituting®.23:

Ap...A%k ag...a aj...ap
€ap...apirby..bi € " fr Ak lzk!(n_k)!Abk---bn ot
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(6.33)
Such identities are familiar from relativistic calculatioms= 4):
eabcdeagfe = 5;,7;16 5 eabcdeabfe = 26,{;
eabcdeabce == 652 5 Eabcdeade =24 5 (634)
where the generalized Kronecker delta is defined by
1
SO, = Auag.ay (6.35)

6.4 DETERMINANTS

Consider arjn? x n?] matrix M,” defined by a direct product of x n] matrices
M?

Mo =Mayay...a,, 70" = MM . MY

—_— e ———

M:‘f_ M _‘_:_ﬂ_‘_7 (6.36)
—— —_——  ———
where
M! = e, (6.37)

The trace of the antisymmetric projection/of, ” is given by

try AM = Agpe..a, <Y Mo MY, . M

(6.38)

The subscripp on tr,(...) distinguishes the traces dn? x n?] matricesM
from the[n x n] matrix tracetr M. To derive a recursive evaluation rule foy, AM,

use 6.19 to obtain
—_—
_ 11? @ (- 1)@ . (6:39)
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Iteration yields

i L el MP
€ € < ——— T D
_ “D e O 4 .
@ }
{>
{> {>
{> {>

(6.40)
Contracting withM/?, we obtain
<
<
‘ ‘
trpAJ\L (=1)F (trp_p AM) tr M*. (6.41)
p

k=1

This formula enables us to compute recursivelygllAM as polynomialsin traces
of powers ofM:

trg AM=1,  try AM = C) = tr M (6.42)

HOO-O)

1 2 2
trQA]\/fzi{(tr]W) —tr M?}

(6.43)
8O
; g

trs AM = ; {(tr M)® = 3(tr M) (tr M?) + 2 tr M?} (6.44)

D QD o
ST

1
try AM = ol {(tr M)* = 6(txr M)* tr M?

+3(tr M?)? + 8 tr M3 tr M — 6 tr M*} . (6.45)
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Forp = n (M? are[n x n] matrices) the antisymmetrized trace is the determinant
det M = tr, AM = Ag,ay...a, """ M M2 . My (6.46)
The coefficientsin the above expansions are simple combinatoric numbers. A general

term for (tr M%) ... (tr M* ), with o; loops of lengtiYy, o, loops of length
¢5 and so on, is divided by the number of ways in which this pattern may be obtained:

070052 0 anlag! Ll (6.47)

6.5 CHARACTERISTIC EQUATIONS

We have noted that the dimension of the antisymmetric tensor space is zero for
n < p. This is rather obvious; antisymmetrization allows each label to be used at
most once, and it is impossible to label more legs than there are labels. In terms of
the antisymmetrization operator this is given by the identity

A=0 if p>n. (6.48)
This trivial identity has an important consequence: it guarantees thdhaxyn|

matrix satisfies a characteristic (or Hamilton-Cayley or secular) equationpTFake
n + 1 and contract with\/® n index pairs ofA:

b ,...bzb]d ai a2 Ap
Acalag...m” " J\/‘[bl Mb2 e ]\/[bn =0
c d
<
<
<

C ) =0. (6.49)

We have already expanded this §40. Forp = n + 1 we obtain theharacteristic
equation

n

0=> (—1)f(trp_r AM)M* (6.50)
k=0
=M" — (tr M)M"™ " + (trg AM) M™% — ...+ (—=1)" (det M) 1.

6.6 FULLY (ANTI)SYMMETRIC TENSORS

We shall denote a fullgymmetridensor by a small circle (white dot)

dabc...f = S W (651)
abc..d
A symmetric tensotl,e...q = dpac...d = dach...a = - . . Satisfies
Sd=d

_f ‘ H (6.52)
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If this tensor is also an invarianttensor, the invariance conditiddf| can be written

as
BB DR
=p Hjé (p = number of indices) (6.53)

Hence, the invariance condition for symmetric tensors is

0= . (6.54)

The fully antisymmetridensors withodd numbers of legs will be denoted by
black dots

fabc...d - B (655)

abc..d
with the invariance condition stated compactly as

0= . (6.56)

If the number of legs igven an antisymmetric tensor @nticyclic,

fabc...d = _fbc...da ) (657)
and the birdtrack notation must distinguish the first leg. A black dot is inadequate
for the purpose. A bar, as for the Levi-Civita tens6rX?), or a semicircle for the
symplecticinvariantintroduced belowifi2.3, and fully skew-symmetric invariant
tensors investigated i 5.27%

fobe = m faboc = m (6.58)

or a similar notation fixes the problem.

6.7 IDENTICALLY VANISHING TENSORS

Noting that a given group-theoretic weight vanistaesticallyis often an important
step in a birdtrack calculation. Some examples are

{X 0, {XEO, (6.59)
TA-

0, =0. (6.60)
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In graphtheory?68 294 the left graphin 6.59 is known as the Kuratowsky graph,
and the right graph in@.60 as the Peterson graph.

H Eo 1_0 qz (6.61)

(6.62)

o e
Ao Re

The above identities hold for any antisymmetric 3-index tensor; in particular, they
hold for the Lie algebra structure constait$;,. They are proven by mapping a
diagram into itself by index transpositions. For example, interchange of the top and
bottom vertices in€.59 maps the diagram into itself, but with tiie 1) factor.

From the Lie algebrad(47) it also follows that for any irreducible rep we have

:ﬁ -0, /@:o. (6.64)



