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Chapter Six

Permutations

The simplest example of invariant tensors is the products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the sym-
metric groupSp, the group of permutations ofp objects, enters into the theory of
tensor reps. In this chapter, I introduce birdtracks notation for permutations, sym-
metrizations and antisymmetrizations and collect a few results that will be useful
later on. These are the (anti)symmetrization expansion formulas (6.10) and (6.19),
Levi-Civita tensor relations (6.28) and (6.30), the characteristic equations (6.50),
and the invariance conditions (6.54) and (6.56). The theory of Young tableaux (or
plethysms) is developed in chapter9.

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a [d× d] matrix:

σβ
α = σ

a1a2...aq

b1...bp
,dp...d1

cq...c2c1 . (6.1)

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

identity:1ab,
cd= δdaδ

c
b =

flip: σ(12)ab,
cd= δcaδ

d
b = . (6.2)

For 3-index tensors, there are six permutations:

1a1a2a3
,b3b2b1 =δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 =δb2a1

δb1a2
δb3a3

=

σ(23)= , σ(13) =

σ(123)= , σ(132) = . (6.3)

Subscripts refer to the standard permutation cycles notation. For the remainder of
this chapter we shall mostly omit the arrows on the Kronecker delta lines.
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The symmetric sum of all permutations,

Sa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

+ δb1a2
δb2a1

. . . δbpap
+ . . .

}

S =

...

=
1

p!

{

...

+

...

+

...

+ . . .

}
, (6.4)

yields the symmetrization operatorS. In birdtracknotation, a white bar drawn across
p lines will always denote symmetrization of the lines crossed. A factor of1/p! has
been introduced in order forS to satisfy the projection operator normalization

S2=S

... = ... . (6.5)

A subset of indicesa1, a2, . . . aq, q < p can be symmetrized by symmetrization
matrixS12...q

(S12...q)a1a2...aq...ap
,bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq

+ δb1a2
δb2a1

. . . δbqaq
+ . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q=
...

... ...

2
1

q . (6.6)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q=S

...
......

...

... =

... ...

... ... . (6.7)

Any permutation has eigenvalue1 on the symmetric tensor space:

σS=S

...

=

...

. (6.8)

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition (6.4) of the symmetrization operator as the sum of allp! permuta-

tions is inconvenient for explicit calculations; a recursive definition is more useful:

Sa1a2...ap
,bp...b2b1 =

1

p

{
δb1a1

Sa2...ap
,bp...b2 +δb1a2

Sa1a3...ap
,bp...b2 + . . .

}

S=
1

p

(
1 + σ(21) + σ(321) + . . .+ σ(p...321)

)
S23...p

...

=
1

p

{

...

+

...

+

...

+ . . .

}
, (6.9)
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which involves onlyp terms. This equation says that if we start with the first index,
we end up either with the first index, or the second index and so on. The remaining
indices are fully symmetric. Multiplying byS23 . . . p from the left, we obtain an
even more compact recursion relation with two terms only:

...

=
1

p

(

...

+ (p− 1)

... ... ...

)
. (6.10)

As a simple application, consider computation of a contraction of a single pair of
indices:

p-2
-1p

...

1
=

1

p

{

... + (p− 1) ... ... ...

}

=
n+ p− 1

p ...

Sapap−1...a1
,b1...bp−1ap =

n+ p− 1

p
Sap−1...a1

,b1...bp−1 . (6.11)

For a contraction in(p− k) pairs of indices, we have

p

k

1

... ...
...

...

...

...
...

=
(n+ p− 1)!k!

p!(n+ k − 1)! k

1

... ...

...

. (6.12)

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

dS = trS = ... =
n+ p− 1

p

...

=
(n+ p− 1)!

p!(n− 1)!
. (6.13)

For example, for 2-index symmetric tensors,

dS = n(n+ 1)/2 . (6.14)

6.2 ANTISYMMETRIZATION

The alternating sum of all permutations,

Aa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

− δb1a2
δb2a1

. . . δbpap
+ . . .

}

A =

...

=
1

p!

{

...

−

...

+

...

− . . .

}
, (6.15)
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yields the antisymmetrization projection operatorA. In birdtrack notation, antisym-
metrization ofp lines will always be denoted by a black bar drawn across the lines.
As in the previous section

A2=A

... = ...

...

=

...

(6.16)

and in addition

SA=0
... =0

...

=
...

= 0 . (6.17)

A transposition has eigenvalue−1 on the antisymmetric tensor space

σ(i,i+1)A=−A

...

=−

...

. (6.18)

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of−1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

...

=
1

p

{

...

−

...

+

...

− . . .

}

=
1

p

{

...

− (p− 1)

...... ...

}
. (6.19)

This is useful for computing contractions such as

p
p−2

−1

...

1

...

=
n− p+ 1

p ...

Aaap−1...a1
,b1...bp−1a=

n− p+ 1

p
Aap−1...a1

,b1...bp−1 . (6.20)

The number of independent components of fully antisymmetric tensors is given by

dA=trA = ... =
n− p+ 1

p

n− p+ 2

p− 1
. . .

n

1

=

{ n!
p!(n−p)! , n ≥ p

0 , n < p
. (6.21)
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For example, for 2-index antisymmetric tensors the number of independent compo-
nents is

dA =
n(n− 1)

2
. (6.22)

Tracing(p− k) pairs of indices yields

+1

...

...

k

...

... ...

p

k

1

...

...

=
k!(n− k)!

p!(n− p)! ...
k...

1
...

. (6.23)

The antisymmetrization tensorAa1a2...,
bp...b2b1 has nonvanishing components, only

if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tensorA has no nonvanishing components:

...

1

...

2

p

= 0 if p > n . (6.24)

This identity implies that forp > n, not all combinations ofp Kronecker deltas are
linearly independent. A typical relation is thep = n+ 1 case

0 =

+1n1 ...

...

2

=
...

−
...

+
...

− . . . . (6.25)

For example, forn = 2 we have

n = 2 : 0=

c

f

ba

e d

− − + + − (6.26)

0= δfaδ
e
bδ

d
c − δfaδ

e
cδ

d
b − δfb δ

e
aδ

d
c + δfb δ

e
cδ

d
a + δfc δ

e
aδ

d
b − δfc δ

e
bδ

d
a .

6.3 LEVI-CIVITA TENSOR

An antisymmetric tensor, withn indices in defining dimensionn, has only one
independent component (dn = 1 by (6.21)). The clebsches (4.17) are in this case
proportional to theLevi-Civita tensor:

(CA)1 ,
an...a2a1 =Cǫan...a2a1 =

1
a2

an

a

...

(CA)a1a2...an
,1=Cǫa1a2...an

=
1

a2

an

a

...

, (6.27)

with ǫ12...n = ǫ12...n = 1. This diagrammatic notation for the Levi-Civita tensor was
introduced by Penrose [281]. The normalization factorsC are physically irrelevant.
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They adjust the phase and the overall normalization in order that the Levi-Civita
tensors satisfy the projection operator (4.18) and orthonormality (4.19) conditions:

1

N !
ǫb1b2...bnǫ

a1a2...an =Ab1b2...bn ,
an...a2a1

......

= ...

1

N !
ǫa1a2...an

ǫa1a2...an =δ11 = 1 ,

...

= 1 . (6.28)

With our conventions,

C =
in(n−1)/2

√
n!

. (6.29)

The phase factor arises from the hermiticity condition (4.15) for clebsches (remem-
ber that indices are always read in the counterclockwise order around a diagram),

(
1

a2

an

a

...

)∗

=
1

a2

an

a

...

i−φǫa1a2...an
= i−φǫan...a2a1

.

Transposing the indices

ǫa1a2...an
= −ǫa2a1...an

= . . . = (−1)n(n−1)/2ǫan...a2a1
,

yieldsφ = n(n − 1)/2. The factor1/
√
n! is needed for the projection operator

normalization (3.50).
Givenn dimensions we cannot label more thann indices, so Levi-Civita tensors

satisfy

0 =

1+

...

...

...1 2 3 n

. (6.30)

For example, for

n = 2 : 0= − +

0= δdaǫbc − δdb ǫac + δdc ǫab . (6.31)

This is actually the same as the completeness relation (6.28), as can be seen by
contracting (6.31) with ǫcd and using

n = 2 : = =
1

2

ǫacǫ
bc=δba . (6.32)

This relation is one of a series of relations obtained by contracting indices in the
completeness relation (6.28) and substituting (6.23):

ǫan...ak+1bk...b1ǫ
an...ak+1ak...a1 =k!(n− k)!Abk...b1 ,

a1...ak
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...

......

=
k!(n− k)!

n!

...

. (6.33)

Such identities are familiar from relativistic calculations(n = 4):

ǫabcdǫ
agfe=δgfebcd , ǫabcdǫ

abfe = 2δfecd

ǫabcdǫ
abce=6δed , ǫabcdǫ

abcd = 24 , (6.34)

where the generalized Kronecker delta is defined by

1

p!
δb1b2...bpa1a2...ap

= Aa1a2...ap
,bp...b2b1 . (6.35)

6.4 DETERMINANTS

Consider an[np×np] matrixMα
β defined by a direct product of[n× n] matrices

M b
a

Mα
β=Ma1a2...ap

,bp...b2b1 = M b1
a1
M b2

a2
. . .M bp

ap

M =

... M =

...

, (6.36)

where

M b
a =

ba
. (6.37)

The trace of the antisymmetric projection ofMα
β is given by

trp AM =Aabc...d,
d′...c′b′a′

Ma
a′M b

b′ . . .M
d
d′

=
...

... . (6.38)

The subscriptp on trp(. . .) distinguishes the traces on[np × np] matricesMβ
α

from the[n×n]matrix tracetrM . To derive a recursive evaluation rule fortrp AM ,
use (6.19) to obtain

...
=

1

p





... − (p− 1)
...



 . (6.39)
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Iteration yields

...

...

=

p−1

...

... −
...

... p−2
+ . . .±

...

∓

P
M

...

.

(6.40)
Contracting withM b

a, we obtain

...

... =

...

...

− ...

...

. . .− (−1)p ...

trp AM =
1

p

p∑

k=1

(−1)k−1 (trp−k AM) trMk . (6.41)

This formula enables us to compute recursively alltrp AM as polynomials in traces
of powers ofM :

tr0 AM =1 , tr1 AM = = trM (6.42)

=
1

2

(
−

)

tr2 AM =
1

2

{
(trM)2 − trM2

}
(6.43)

=
1

3



 − +





tr3 AM =
1

3!

{
(trM)3 − 3(trM)(trM2) + 2 trM3

}
(6.44)

=
1

4



 − + −





tr4 AM =
1

4!

{
(trM)4 − 6(trM)2 trM2

+ 3(trM2)2 + 8 trM3 trM − 6 trM4
}
. (6.45)
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Forp = n (M b
a are[n× n] matrices) the antisymmetrized trace is the determinant

detM = trn AM = Aa1a2...an
,bn...b2b1 Ma1

b1
Ma2

b2
. . .Man

bn
. (6.46)

The coefficients in the aboveexpansions are simple combinatoric numbers. A general
term for(trM ℓ1)α1 · · · (trM ℓs)αs , with α1 loops of lengthℓ1, α2 loops of length
ℓ2 and so on, is divided by the numberof ways in which this pattern may be obtained:

ℓα1

1 ℓα2

2 . . . ℓαs
s α1!α2! . . . αs! . (6.47)

6.5 CHARACTERISTIC EQUATIONS

We have noted that the dimension of the antisymmetric tensor space is zero for
n < p. This is rather obvious; antisymmetrization allows each label to be used at
most once, and it is impossible to label more legs than there are labels. In terms of
the antisymmetrization operator this is given by the identity

A = 0 if p > n . (6.48)

This trivial identity has an important consequence: it guarantees that any[n × n]
matrix satisfies a characteristic (or Hamilton-Cayley or secular) equation. Takep =
n+ 1 and contract withM b

a n index pairs ofA:

Aca1a2...an
,bn...b2b1dMa1

b1
Ma2

b2
. . .Man

bn
=0

dc

...
...

=0 . (6.49)

We have already expanded this in (6.40). Forp = n+1we obtain thecharacteristic
equation

0=

n∑

k=0

(−1)k(trn−k AM)Mk , (6.50)

=Mn − (trM)Mn−1 + (tr2 AM)Mn−2 − . . .+ (−1)n (detM)1 .

6.6 FULLY (ANTI)SYMMETRIC TENSORS

We shall denote a fullysymmetrictensor by a small circle (white dot)

dabc...f =

dcba

...

...

. (6.51)

A symmetric tensordabc...d = dbac...d = dacb...d = . . . satisfies

Sd=d

. ..

...
=

...

...
. (6.52)
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If this tensor is also an invariant tensor, the invariancecondition (4.36) can be written
as

0= + + = + +

=p (p = number of indices). (6.53)

Hence, the invariance condition for symmetric tensors is

0 =

...

. ..
. (6.54)

The fully antisymmetrictensors withodd numbers of legs will be denoted by
black dots

fabc...d =

dcba

...

...

, (6.55)

with the invariance condition stated compactly as

0 =
...

...

. (6.56)

If the number of legs iseven, an antisymmetric tensor isanticyclic,

fabc...d = −fbc...da , (6.57)

and the birdtrack notation must distinguish the first leg. A black dot is inadequate
for the purpose. A bar, as for the Levi-Civita tensor (6.27), or a semicircle for the
symplectic invariant introduced below in (12.3), and fully skew-symmetric invariant
tensors investigated in (15.27)

fab...c = ... , fab...c = ... (6.58)

or a similar notation fixes the problem.

6.7 IDENTICALLY VANISHING TENSORS

Noting that a given group-theoreticweight vanishesidenticallyis often an important
step in a birdtrack calculation. Some examples are

≡0 , ≡ 0 , (6.59)

≡0 , ≡ 0 . (6.60)
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In graph theory [268, 294] the left graph in (6.59) is known as the Kuratowsky graph,
and the right graph in (6.60) as the Peterson graph.

≡0 , ≡ 0 , ≡ 0 , (6.61)

≡0 , ≡ 0 , (6.62)

≡0 , ≡ 0 . (6.63)

The above identities hold for any antisymmetric 3-index tensor; in particular, they
hold for the Lie algebra structure constantsiCijk. They are proven by mapping a
diagram into itself by index transpositions. For example, interchange of the top and
bottom vertices in (6.59) maps the diagram into itself, but with the(−1)5 factor.

From the Lie algebra (4.47) it also follows that for any irreducible rep we have

��
��
��
��

��
��
��
��

��
��
��
��

= 0 , ��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

������
= 0 . (6.64)


