
Clebsches project a tensor in V p ⊗ V̄ q onto a subspace λ.
In practice one usually reduces a tensor step by step, decomposing a 2-particle state
at each step. While there is some arbitrariness in the order in which these reductions
are carried out, the final result is invariant and highly elegant: any group-theoretical 
invariant quantity can be expressed in terms of Wigner 3- and 6-j coefficients.

5.1 COUPLINGS AND RECOUPLINGS

We denote the clebsches forµ⊗ ν → λ by
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Hereλ, µ, ν are rep labels, and the corresponding tensor indices are suppressed.
Furthermore, ifµ andν are irreducible reps, the same clebsches can be used to
projectµ⊗ λ̄ → ν̄

Pν =
dν
dλ
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andν ⊗ λ̄ → µ̄

Pµ =
dµ
dλ
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Here the normalization factors come fromP 2 = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:
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In this definition one has to keep track of the ordering of the lines around the vertex.
If in some context the birdtracks look better with two legs interchanged, one can



use Yutsis’s notation [359]:
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While all sensible clebsches are normalized by the orthonormality relation (4.19),
in practice no two authors ever use the same normalization for 3-vertices (in other
guises known as 3-j coefficients, Gell-Mannλ matrices, Cartan roots, Diracγ
matrices,etc.). For this reason we shall usually not fix the normalization

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

µ

ν

σλ
= aλ ��

��
��

��
��
��λ σ

, aλ =

��
��
��
��

��
��
��

��
��
��

��
��
��
��

λ

ν

µ

dλ
, (5.6)

leaving the reader the option of substituting his or her favorite choice (such asa = 1
2

if the 3-vertex stands for Gell-Mann12λi, etc.).
To streamline the discussion, we shall drop the arrows and most of the rep labels

in the remainder of this chapter — they can always easily be reinstated.
The above three projection operators now take a more symmetric form:
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In terms of 3-vertices, the completeness relation (4.20) is
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Any tensor can be decomposed by successive applications of the completeness
relation:
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Hence, if we know clebsches forλ ⊗ µ → ν, we can also construct clebsches for
λ⊗µ⊗ν⊗ . . . → ρ. However, there is no unique way of building up the clebsches;
the above state can equally well be reduced by a different coupling scheme
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Consider now a process in which a particle in the repµ interacts with a particle
in the repν by exchanging a particle in the repω:
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The final particles are in repsρ andσ. To evaluate the contribution of this exchange
to the spectroscopic levels of theµ-ν particles system, we insert the Clebsch-Gordan
series (5.8) twice, and eliminate one of the sums by the orthonormality relation (5.6):
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By assumptionλ is an irrep, so we have a recoupling relation between the exchanges
in “s” and “t channels”:
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We shall refer to as 3-j coefficients and as 6-j coefficients, and commit
ourselves to no particular normalization convention.

In atomic physics it is customary to absorb into the 3-vertex and define a 3-j
symbol [238, 287, 347](
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Hereα = 1, 2, . . . , dλ, etc., are indices,λ, µ, ν rep labels andω the phase conven-
tion. Fixing a phase convention is a waste of time, as the phases cancel in summed-
over quantities. All the ugly square roots, one remembers from quantum mechanics,

come from sticking
√

into 3-j symbols. Wigner [347] 6-j symbolsare related
to our 6-j coefficientsby
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The name3n-j symbol comes from atomic physics, where a recoupling involves
3n angular momentaj1, j2, . . . , j3n (see section14.2).

Most of the textbook symmetries of and relations between6-jsymbols are obvious
from looking at the corresponding diagrams; others follow quickly from complete-
ness relations.

If we know the necessary 6-j’s, we can compute the level splittings due to single
particle exchanges. In the next section we shall show that a far stronger claim can
be made: given the 3- and 6-j coefficients, we can computeall multiparticle matrix
elements.



Skeletons
Vertex

insertions
Self-energy
insertions

Total
number

1-j 1

3j 1

6-j 2

9-j 5

12-j 16

Table 5.1 Topologically distinct types of Wigner3n-j coefficients, enumerated by drawing
all possible graphs, eliminating the topologically equivalent ones by hand. Lines
meeting in any 3-vertex correspond to any three irreducible representations with
a nonvanishing Clebsch-Gordan coefficient, so in general these graphs cannot be
reduced to simpler graphs by means of such as the Lie algebra (4.47) and Jacobi
identity (4.48).


