
2.3 SECOND EXAMPLE: E6 FAMILY

What invariance group preserves norms of complex vectors, as well as a symmetric 
cubic invariant,

D(p, q, r) = dabcpaqbrc = D(q, p, r) = D(p, r, q) ?

We analyze this case following the steps of the summary of section 2.1:

i) Primitive invariant tensors
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ii) Primitiveness. daefdefb must be proportional toδab , the only primitive 2-index
tensor. We use this to fix the overall normalization ofdabc’s:
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iii) Invariant hermitian matrices.We shall construct here the adjoint rep projection
operator on the tensor product space of the defining rep and its conjugate. All
invariant matrices on this space are
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They are hermitian in the sense of being invariant under complex conjugation and
transposition of indices (see (3.21)). The crucial step in constructing this basis is the
primitiveness assumption: 4-leg diagrams containing loops are not primitive (see
section3.3).

The adjoint rep is always contained in the decomposition ofV⊗V̄ → V ⊗V̄ into
(ir)reducible reps, so the adjoint projection operator must be expressible in terms of
the 4-index invariant tensors listed above:
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iv) Invariance. The cubic invariant tensor satisfies (2.4)
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Contracting with dabc, we obtain

+ 2 = 0 .

Contracting next with(Ti)
b
a, we get an invariance condition on the adjoint projection

operator,

+ 2 = 0 .

Substituting the adjoint projection operator yields the first relation between the
coefficients in its expansion:
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v) The projection operatorsshould be orthonormal,PµPσ = Pµδµσ. The adjoint
projection operator is orthogonal to (2.5), the singlet projection operatorP2. This
yields the second relation on the coefficients:

0=P2PA
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Finally, the overall normalization factor A is fixed byPAPA = PA:
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Combining the above three relations, we obtain the adjoint projection operator for
the invariance group of a symmetric cubic invariant:
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. (2.7)

The correspondingcharacteristic equation, mentioned in the point iv) of the sum-
mary of section2.1, is given in (18.10).

The dimension of the adjoint rep is obtained by tracing the projection operator:
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This Diophantine condition is satisfied by a small family of invariance groups.  
The most interesting member of this family is the exceptional Lie group E6, with n 
= 27 and N = 78.


