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26.1 Compact groups

All the group theory that we shall need here is given by

The Peter-Weyl Theorem, and its corollaries: A compact Lie group
G is completely reducible, its representations are fully reducible (just
as in the finite group representation theory), every compact Lie group
is a closed subgroup of U(n) for some n, and every continuous, uni-
tary, irreducible representation of a compact Lie group is finite di-
mensional.

The theory of semisimple Lie groups is elegant, perhaps too elegant. In what
follows, we serve group theoretic nuggets in need-to-know portions, offering a
pedestrian route through a series of simple examples of familiar aspects of group
theory and Fourier analysis, and a high, cyclist road in the text proper.

But main idea is this: the character χ(m)(θ) of the Frobenius-Weyl representa-
tion theory is a generalization to all compact continuous Lie groups of the weight
eiθm in the Fourier decomposition of a smooth function on a circle into eigen-
modes of translation. mth Fourier component fits m node function around the
circle; (m1,m2, . . . ,mN) representation of a compact Lie group fits a correspond-
ing multi-mode function onto the smooth manifold swept out by the action of the
group. So a basis for a d-dimensional representation (m1,m2, . . . ,mN) of an N-
dimensional compact Lie group is a set of d linearly independent eigenfunctions
on the N-dimensional compact group manifold, with m1, m2, . . . , mN ‘nodes’
along the N directions needed to span the manifold. For a circle this is Fourier
analysis; for a sphere these are spherical harmonics, and the Peter-Weyl theorem
states that analogous expansion exists for every compact Lie group. We will never
need to construct these explicitly.

26.1.1 Group representations

Let qa be a vector in d-dimensional vector space V , and G be a group of linear
transformations

q′a = D(g)a
bqb , a, b = 1, 2, . . . , d , g ∈ G

(repeated indices summed throughout this chapter). The [d×d] matrices D(g) form
a representation of the group G. Vectors in the dual space q transform as

q′a = D(g)a
b qb .

Tensors transform as

h′ab
c = D(g)a

f D(g)b
eD(g)c

d h f e
d .
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A function H is an invariant function if (and only if) for any transformation 
 g ∈ G and for any set of vectors q, r, s, . . .

H(D(g)†q,D(g)†r, . . .D(g)s) = H(q, r, . . . , s) . (26.2)

Unitary transformations connected to the identity can be generated by sequences
of infinitesimal transformations

D(g)a
b ' δb

a + iεi(Ti)b
a εi ∈ R , Ti hermitian ,

and |εi| � 1. The N group generators Ta, a = 1, · · · ,N close the Lie algebra of
G. (More generally, one also needs to study invariance under discrete coordinate
transformations (see chapter 25).

Consider a multilinear invariant function

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

In terms of the generators Ti, H is invariant if all generators “annihilate" it, Ti ·h =

0: 1

(Ti)a′
a h c...

a′b... + (Ti)b′
b h c...

ab′... − (Ti)c
c′h

c′...
ab... + . . . = 0 . (26.3)

Vector space V is irreducible if the only invariant subspaces of V under the action
of G are (0) and V . If every V on which G acts can be written as a direct sum of
irreducible subspaces, then G is completely reducible.

example 26.1

p. 547

26.1.2 Group integrals

Consider a group integral of form∫
dg D(g)a

bD(g)c
d , (26.4)

where D(g)a
b is a unitary [d×d] matrix representation of g ∈ G, G a compact Lie

group, D(g)c
d is the matrix representation of the action of g on the dual vector

space,

D(g)c
d = (D(g)†)d

c ,

and the integration is over the entire range of g ∈ G, G a compact Lie group. For a
finite group G with |G| group elements the normalized measure is a discrete sum,

dµ(x) =
1
|G|

∑
g

δ(gx) .
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For continuous groups, the integration measure dg is known as the Haar measure,
and, given an explicit parametrization of the group manifold, is explicitly com-
putable (see example 26.4 and example 26.5). However, we do need such explicit
parametrizations, as the integral (26.4) over the entire group is defined by two
requirements:

1. Normalization: The group average of an scalar quantity is the quantity it-
self, ∫

dg = 1 . (26.5)

2. Orthonormality of irreducible representations. How do we define∫
dg D(g)a

b = ?

The action of g ∈ G is to rotate a vector xa into x′a = D(g)a
bxb

Manifold traced out by action of G
for all possible group elements g

x
x’

g

The averaging smears x in all directions, hence the second integration rule∫
dg D(g)a

b = 0 , if D(g) is non-trivial representation , (26.6)

simply states that the average over all rotations of a vector is zero.

A representation is trivial (a ‘singlet’) if D(g) = 1 for all group elements g. In
this case no averaging is taking place, and the first integration rule (26.5) applies.

What happens if we average a bilinear combination of a pair of vectors x, y?
There is no reason why such pair should average to zero; for example, we know
that the scalar function |x|2 =

∑
a xax∗a = xaxa is invariant under unitary transfor-

mations, so it cannot have a vanishing average. Therefore, in general∫
dg D(g)a

bD(g)c
d , 0 . (26.7)

To get a feeling for what the right-hand side looks like, we recommend that you
work out the examples.
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example 26.2

p. 547

Now let D(g) be any irreducible [d×d] rep. Irreducibility (known in this context
as ‘Schur’s Lemma’) means that any invariant [d×d] tensor Aa

b is proportional to
δa

b. As the only bilinear invariant is δa
b, the Clebsch-Gordan series

=
1
d

+

irreps∑
λ

λ (26.8)

contains one and only one singlet. Only the singlet survives the group averaging,
and ∫

dg D(λ)(g)a
dD(λ)(g)b

c =
1
d
δd

cδ
b
a . (26.9)

is true for any [d×d] irreducible rep D(λ)(g).

If we take D(µ)(g)αβ and D(λ)(g)d
c in inequivalent representations λ, µ (there

is no matrix K such that D(λ)(g) = KD(µ)(g)K−1 for any g ∈ G), then there is no
way of forming a singlet, and∫

dg D(λ)(g)a
dD(µ)(g)βα = 0 if λ , µ . (26.10)

26.1.3 Characters

The trace of an irreducible [d×d] matrix representation λ of g is called the char-
acter of the representation:

χ(λ)(g) = tr D(λ)(g) = D(λ)(g)a
a . (26.11)

The character of the conjugate representation is

χ(λ)(g−1) = tr D(λ)(g)† = D(λ)(g)a
a = χ(λ)(g)∗ . (26.12)

Contracting (26.8) with two arbitrary invariant [d×d] tensors hd
a and ( f †)b

c, we
obtain the character orthonormality relation∫

dg χ(λ)(hg) χ(µ)(g f ) = δλµ
1
dλ
χ(λ)(h f †) (26.13)

The character orthonormality tells us that if two group invariant quantities share a
D(λ)(g)D(λ)(g−1) pair, the group averaging sews them into a single group invariant
quantity. The replacement of D(λ)(g)a

b by the character χ(λ)(h−1g) does not mean
that the matrix structure is lost; D(λ)(g)a

b can be recovered by differentiating

D(g)a
b =

d
dhb

aχ
(λ)(h−1g) . (26.14)
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The essential group theory we shall need here is most compactly summarized
by

The Group Orthogonality Theorem: Let Dµ, Dµ′ be two irreducible matrix repre-
sentations of a compact group G of dimensions dµ, dµ′ ,∫

dg D(µ)(g)a
bD(µ′)(g−1)a′

b′ =
1
dµ
δµ,µ′δ

a′
a δ

b
b′ .

The new trace formula follows from the full reducibility of representations of
a compact group G acting linearly on a vector space V , with irreducible repre-
sentations labeled by sets of integers µ = (µ1, · · · , µN), and the vector space V
decomposed into invariant subspaces Vµ. For a N-dimensional compact Lie group
G the fundamental result is the Weyl full reducibility theorem, with projection
operator onto the Vµ irreducible subspace given by 2

Pµ = dµ

∫
G

g χ(µ)(g−1)U(g) . (26.15)

The group elements g = g(θ1, . . . , θN ) = eiθ·T are parameterized by N real numbers 
{θ1, . . . , θN } of finite range, hence designation ‘compact’.
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Commentary

Remark 26.1. Literature 18 Here we need only basic results, on the level of any standard 
group theory textbook [14]. This material is covered in any introduction to linear algebra 
[12, 19, 22] We found Tinkham [29] the most enjoyable as a no-nonsense, the user 
friendliest introduction to the basic concepts. The construction of projection operators 
given here is taken from refs. [7–9]. Who wrote this down first we do not know, but we 
like Harter’s exposition [15–17] best. Harter’s theory of class algebras offers a more 
elegant and systematic way of constructing the maximal set of commuting invariant 
matrices Mi than the sketch offered here. Bluman and Kumei [2] Chapter 2 offers a clear 
and pedagogical introduction to Lie groups of transformations. For the Group 
Orthogonality Theorem see, for example, refs. [9, 30], or consult Googlette.

Remark 26.2. Full reducibility of semisimple Lie groups: The study of integrals over 
compact Lie groups with respect to Haar measure is important in many areas of 
mathematics and physics, see Mehta [20]. In 1896-1897 Frobenius introduced notions of 
‘characters’ and group ‘representations’, and proved the full reducibility of representa-
tions of finite groups. The characters χ(µ)(g) for all compact semisimple Lie groups were 
constructed and the full reducibility proven by Weyl [24], extending Cartan’s local Lie 
algebra classification to a global theory of group representations. For the history of this 
period, see the excellent essay by Hawkins [18].
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26.4 Examples

Example 26.1. Lie algebra. 22 As one does not want the rules to change at every step,
the generators Ti are themselves invariant tensors,

(Ti) a
b = D(g)a

a′D(g)b
b′D(A)(g)ii′ (Ti′ ) a′

b′ , (26.27)

where D(A)(g)i j is the adjoint [N ×N] matrix representation of g ∈ G. For infinitesi-
mal transformations, D(g)a

b ' δb
a + iεi(Ti)b

a. The [d×d] matrices Ti are in general non-
commuting, and from (26.3) it follows that they close N-element Lie algebra

TiT j − T jTi = iCi jkTk i, j, k = 1, 2, ...,N ,

where Ci jk are the structure constants.

Example 26.2. A group integral for SU(n) V × V space. Let D(g) be the defining
[n×n] matrix representation of SU(n). The defining representation is non-trivial, so it
averages to zero by (26.6). The first non-vanishing average involves D(g)†, the matrix
representation of the action of g on the conjugate vector space. To avoid dealing with the
multitude of dummy indices, we resort to diagrammatic notation: 23

D(g)a
` =

��
��
��
��

��
��
��
��a b , D(g)a

` =
��
��
��
��

��
��
��
��a b . (26.28)

For G the arrows and the triangle point the same way, while for G† they point the opposite
way. Unitarity D(g)†D(g) = 1 is given by

D(g)c
aD(g)c

b = D(g)a
cD(g)b

c = δb
a ,

or, diagramatically:

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
�� . (26.29)

In this notation, the D(g)D(g)† integral (26.7) to be evaluated is∫
dg

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b

a

c

d

. (26.30)

For SU(n) the V ⊗ V tensors decompose into the singlet and the adjoint rep

��
��
��
��

��
��
��
��

= 1
n ������ ������ + ������ ������

δd
aδ

b
c = 1

nδ
b
aδ

d
c + 1

a (Ti)b
a (Ti)d

c .

We multiply (26.30) with the above decomposition of the identity. The unitarity relation
(26.29) eliminates G’s from the singlet:

��
��
��
��

��
��
��
��

=
1
n

������ ������ + ������ ������ . (26.31)

The generators Ti are invariant tensors, and transform under G according to (26.27). Mul-
tiplying by G−1

ii , we obtain

= . (26.32)
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Hence, the pair GG† in the defining representation can be traded in for a single G in the
adjoint rep

D(g)a
dD(g)b

c = 1
dδ

d
cδ

b
a + 1

a (Ti)b
a Gi j

(
T j

)d

c

= 1
n + .

The adjoint representation Gi j is non-trivial, so it gets averaged to zero by (26.6). Only
the singlet survives

∫
dg =

1
d∫

dg D(g)a
dD(g)b

c =
1
d
δd

cδ
b
a . (26.33)
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