
Chapter 10

Flips, slides and turns

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

Dynamical systems often come equipped with symmetries, such as the reflec-
tion and rotation symmetries of various potentials.

This chapter assumes familiarity with basic group theory, as discussed in ap-
pendix A10.1. We find the abstract notions easier to digest by working out the
examples; links to these examples are interspersed throughout the chapter. Work-
ing through these examples is essential and will facilitate your understanding of
various definitions. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly to Z2 = D1 example 11.3, example 11.8, and
C3v = D3 example 11.5, backtrack as needed.

10.1 Discrete symmetries

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
a symmetry (invariance or equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A1.6) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G = {e, g2, . . . , gn, . . . } (10.1)

and a group multiplication rule g j ◦ gi (often abbreviated as g jgi), satisfying
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http://youtube.com/embed/Bq0sTGf3PaI
http://youtube.com/embed/3-IOimSbJV4
http://youtube.com/embed/AwqIddo0t_Y
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Figure 10.1: The symmetries of three disks on an
equilateral triangle. A fundamental domain is indi-
cated by the shaded wedge. Work through exam-
ple 11.5.

1. Closure: If gi, g j ∈ G, then g j ◦ gi ∈ G

2. Associativity: gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identity e: g ◦ e = e ◦ g = g for all g ∈ G

4. Inverse g−1: For every g ∈ G, there exists a unique element h = g−1 ∈ G
such that h ◦ g = g ◦ h = e.

If the group is finite, the number of elements, |G| = n, is called the order of the
group.

The theory of finite groups is developed on two levels. There is a beautiful
theory of groups as abstract entities which yields the classification of their struc-
tures and their irreducible, orthogonal representations in terms of characters. Then
there is the considerably messier matter of group representations, in our case the
ways in which a given symmetry group acts on and stratifies the particular state
space of a problem at hand, the most familiar being the ways in which symme-
tries reduce and block-diagonalize quantum-mechanical problems. What helps us
here is that the symmetries ‘commute’ with dynamics, i.e., we can first reduce a
given state space to its irreducible components, using the symmetry alone, and
then study the action of dynamics on these subspaces. As our intuition is based
on physical manifestations of group actions, in this brief review we shall freely
switch gears between the abstract and the representation levels whenever peda-
gogically convenient.

Whatever else you must do, do work through example 11.5. Once you under-
stand how this works out for the symmetries of an equilateral triangle, or, equiv-
alently, for the three disk billiard of figure 10.1, you know almost everything you
need to know about the general, non-abelian finite groups.

example 10.1

p. 189

example 10.2

p. 189
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Definition: Matrix group. The set of [d×d]-dimensional real non-singular ma-
trices A, B,C, · · · ∈ GL(d) acting in a d-dimensional vector space V ∈ Rd forms
the general linear group GL(d) under matrix multiplication. The product of matri-
ces A and B gives the matrix C, Cx = B(Ax) = (BA)x ∈ V, for all x ∈ V . The unit
matrix 11 is the identity element which leaves all vectors in V unchanged. Every
matrix in the group has a unique inverse.

Definition: Matrix representation. Linear action of a group element g on
states x ∈ M is given by a finite non-singular [d×d] matrix D(g), the matrix
representation of element g ∈ G. For brevity we shall often denote by ‘g’ both the
abstract group element and its matrix representation, D(g)x→ gx.

However, when dealing simultaneously with several representations of the
same group action, the notation D(µ)(g) is preferable, where µ is a representa-
tion label (see appendix A10.1). A linear or matrix representation D(G) of the
abstract group G acting on a representation space V is a group of matrices D(G)
such that

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 is mapped onto the matrix product D(g2 ◦ g1) =

D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication,
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =

D(g)−1.

Some simple 3D representations of the group order 2 are given in example 10.4.

example 10.3

p. 189

example 10.4

p. 189

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g ∈ G there exists a number
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m ≤ |G| such that

gm ≡ g ◦ g ◦ · · · ◦ g︸          ︷︷          ︸
m times

= e → |det D(g)| = 1 . (10.3)

As the modulus of its determinant is unity, det g is an mth root of 1. This is the
reason why all finite groups have unitary representations. 1

Definition: Symmetry of a dynamical system.

1. A group G is a symmetry of the dynamics if for every solution f (x) ∈ M
and g ∈ G, g f (x) is also a solution.

2. Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M →M
(a discrete time map f , or the continuous flow f t map from the d-dimens-
ional manifoldM into itself) commutes with all actions of G,

f (gx) = g f (x) . (10.4)

3. In the language of physicists: The ‘law of motion’ is invariant, i.e., retains
its form in any symmetry-group related coordinate frame (10.2),

f (x) = g−1 f (gx) , (10.5)

for x ∈ M and any finite non-singular [d×d] matrix representation g of
element g ∈ G. As this are true for any state x, one can state this more
compactly as f ◦ g = g ◦ f , or f = g−1 ◦ f ◦ g.

Why ‘equivariant?’ A scalar function h(x) is said to be G-invariant if h(x) = 
h(gx) for all g ∈ G. The group actions map the solution f : M → M into different 
(but equivalent) solutions g f (x), hence the invariance condition f (x) = g−1 f (gx) 
appropriate to vectors (and, more generally, tensors). The full set of such solu-
tions is G-invariant, but the flow that generates them is said to be G-equivariant. 
It is obvious from the context, but for verbal emphasis applied mathematicians 
like to distinguish the two cases by in/equi-variant. 

example 10.5

p. 189

example 10.6

p. 190

example 10.9

p. 191
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10.2 Subgroups, cosets, classes

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

Inspection of figure 11.1 indicates that various 3-disk orbits are the same up to
a symmetry transformation. Here we set up some group-theoretic notions needed
to describe such relations. The reader might prefer to skip to sect. 11.1, backtrack
as needed.

Definition: Subgroup. A set of group elements H = {e, b2, b3, . . . , bh} ⊆ G
closed under group multiplication forms a subgroup.

Definition: Coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of order h =

|H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but not in H, is called left
coset cH. For a given subgroup H the group elements are partitioned into H and
m − 1 cosets, where m = |G|/|H|. The cosets cannot be subgroups, since they do
not include the identity element. A nontrival subgroup can exist only if |G|, the
order of the group, is divisible by |H|, the order of the subgroup, i.e., only if |G| is
not a prime number.

example 10.7

p. 190

Next we need a notion that will, for example, identify the three 3-disk 2-cycles
in figure 11.1 as belonging to the same class.

Definition: Class. An element b ∈ G is conjugate to a if b = c a c−1 where c is
some other group element. If b and c are both conjugate to a, they are conjugate
to each other. Application of all conjugations separates the set of group elements
into mutually not-conjugate subsets called classes, types or conjugacy classes.
The identity e is always in the class {e} of its own. This is the only class which is
a subgroup, all other classes lack the identity element.

example 10.8

p. 190

The geometrical significance of classes is clear from (10.5); it is the way co-
ordinate transformations act on mappings. The action, such as a reflection or
rotation, of an element is equivalent to redefining the coordinate frame.

Definition: Conjugate symmetry subgroups. The splitting of a group G into
a symmetry group Gp of orbitMp and mp − 1 cosets cGp relates the orbitMp to
mp−1 other distinct orbits cMp. All of them have equivalent symmetry subgroups,

finiteGr - 18feb2019 boyscout edition16.2, Feb 19 2019

http://youtube.com/embed/Aqbs1mLnis4


197

or, more precisely, the points on the same group orbit have conjugate symmetry
subgroups (or conjugate stabilizers):

Gc p = c Gp c−1 , (10.6)

i.e., if Gp is the symmetry of orbit Mp, elements of the coset space c ∈ G/Gp 
generate the mp − 1 distinct copies of Mp.
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Definition: Reducibility. If state space M on which G acts can be written as 
a direct sum of irreducible subspaces, then the representation of G on state space 
M is completely reducible.

This being group theory, definitions could go on forever. But we stop here, 
hopefully having defined everything that we need at the moment, and we pile on a 
few more definitions in sect. 11.1, chapter 12, chapter 25 and chapter 26. There 
are also chapter 30, appendix A10, and beyond that the n → ∞ group theory 
textbooks, if you thirst for more.
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Commentary

Remark 10.1. Literature. We found Tinkham [12] the most enjoyable as a no-nonsense, 
the user friendliest introduction to the basic concepts. Slightly longer, but perhaps student-
friendlier is Part I Basic Mathematics of Dresselhaus et al. [4]. Byron and Fuller [1], the 
last chapter of volume two, offers an introduction even more compact than Tinkham’s. 
For a summary of the theory of discrete groups see, for example, Johnson [9]. Chapter 3 
of Rebecca Hoyle [8] is a very student-friendly overview of the group theory a nonlinear 
dynamicist might need, with exception of the quotienting, reduction of dynamics to a 
fundamental domain, which is not discussed at all. For that, Fundamental domain wiki 
is very clear. We also found Quotient group wiki helpful. Curiously, we have not read 
any of the group theory books that Hoyle recommends as background reading, which just 
confirms that there are way too many group theory books out there. For example, one that 
you will not find useful at all is ref. [3]. The reason is presumably that in the 20th century 
physics (which motivated much of the work on the modern group theory) the focus was on 
the linear representations used in quantum mechanics, crystallography and quantum field 
theory. We shall need these techniques in Chapter 25, where we reduce the linear action 
of evolution operators to irreducible subspaces. However, in ChaosBook we are looking 
at nonlinear dynamics, and the emphasis is on the symmetries of orbits, their reduced state 
space sisters, and the isotypic decomposition of their linear stability matrices.
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10.4 Examples

Example 10.1. Finite groups. Some finite groups that frequently arise in applications:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

• S n: the symmetric group of all permutations of n symbols, order n!.

Example 10.2. Cyclic and dihedral groups. The cyclic group Cn ⊂ SO(2) of order 
n is generated by one element. For example, this element can be rotation through 2π/n. 

The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements one at least 
of which must reverse orientation. For example, take σ corresponding to reflection in the 
x-axis. σ2 = e; such operation σ is called an involution. C to rotation through 2π/n, then
Dn = 〈σ, C〉, and the defining relations are σ2 = Cn = e, (Cσ)2 = e.
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Example 10.7. Subgroups, cosets of D3. (Continued from example 11.6)
The 3-disks symmetry group, the D3 dihedral group (11.8) has six subgroups

{e}, {e, σ12}, {e, σ13}, {e, σ23}, {e,C1/3,C2/3}, D3 . (10.16)

The left cosets of subgroup D1 = {e, σ12} are {σ13,C1/3}, {σ23,C2/3}. The coset of sub-
group C3 = {e,C1/3,C2/3} is {σ12, σ13, σ23}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123 is D3, then all
elements in a coset act on it the same way, for example {σ12, σ13, σ23}123 = 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and any
one of the reflections, of order 2, and C3 = {e,C1/3,C2/3}, of order 3, so possible cycle
multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has full sym-
metry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-disk billiard.
Examples of other multiplicities are given in figure 11.1 and figure 11.6. (continued in
example 10.8)

Example 10.8. Classes of D3. (Continued from example 10.7)
The three classes of the 3-disk symmetry group D3 = {e,C1/3,C2/3, σ, σC1/3, σC2/3}, are
the identity, any one of the reflections, and the two rotations,

{e} ,


σ12
σ13
σ23

 ,

{
C1/3

C2/3

}
. (10.17)

In other words, the group actions either flip or rotate. (continued in example 11.7)
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