25.1 Transformation of functions

So far we have recast the problem of long time dynamics into language of lin-ear operators acting of functions, simplest one of which is $\rho(x, t)$, the density of trajectories at time *t*. First we will explain what discrete symmetries do to such functions, and then how they affect their evolution in time.

Let g be an *abstract group element* in G. For a discrete group a group element is typically indexed by a discrete label, $g = g_j$. For a continuous group it is typically parametrized by a set of continuous parameters, $g = g(\theta_m)$. As discussed on page 182, linear action of a group element $g \in G$ on a state $x \in \mathcal{M}$ is given by its *matrix representation*, a finite non-singular $[d \times d]$ matrix D(g):

$$x \to x' = D(g) x. \tag{25.1}$$

How does the group act on a function ρ of x? Denote by U(g) the operator $\rho'(x) = U(g)\rho(x)$ that returns the transformed function. One *defines* the transformed function ρ' by requiring that it has the same value at x' = D(g)x as the initial function has at x,

$$\rho'(x') = U(g)\rho(D(g)x) = \rho(x).$$

Replacing $x \to D(g)^{-1}x$, we find that a group element $g \in G$ acts on a function $\rho(x)$ defined on state space \mathcal{M} by its *operator representation*

$$U(g)\rho(x) = \rho(D(g)^{-1}x).$$
(25.2)

This is the conventional, Wigner definition of the effect of transformations on functions that should be familiar to master quantum mechanicians. Again: U(g) is an 'operator', not a matrix - it is an operation whose only meaning is exactly what (25.2) says. And yes, Mathilde, the action on the state space points is $D(g)^{-1}x$, not D(g)x.

Consider next the effect of two successive transformations g_1, g_2 :

$$U(g_2)U(g_1)\rho(x) = U(g_2)\rho(D(g_1)^{-1}x) = \rho(D(g_2)^{-1}D(g_1)^{-1}x)$$
$$= \rho(D(g_1g_2)^{-1}x) = U(g)\rho(x).$$

Hence if $g_1g_2 = g$, we have $U(g_2)U(g_1) = U(g)$: so operators U(g) form a representation of the group.