
2.2.2 Hermitian conjugate of a birdtrack

Note 2.2: Hermitian Conjugate of birdtracks

Let A be a birdtrack operator. Its Hermitian conjugate with respect to the scalar prod-
uct (2.13) in the birdtrack formalism is formed by flipping the birdtrack about the vertical
axis and reversing the arrowsa; for example,

...
...

A
reflect−−−−→ ...

...
A

reverse arrows−−−−−−−−→ ...
...

A ,

i.e.

(
...

...
A

)†
= ...

...
A .

(2.18)

aAgain, we have not specified the space on which A acts as this procedure is true in general, irrespective
of the space.
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!
Important: Pay close attention to the differences between the procedures de-
scribed in Note 2.2 and in Note 1.2: In Note 2.2, we explained that the Hermitian
conjugate of any birdtrack operator is formed via reflecting the birdtrack about its

vertical axis and reversing the arrows. In comparison, Note 1.2 that one obtains the inverse
only of an element of of Sn via reflecting and reversing arrows — the procedure for taking
the Hermitian conjugate is valid for all birdtrack operators, while the procedure for taking
the inverse holds only for the elements of Sn!

However, being clear about the different procedures, we immediately arrive at the following result
for the elements of Sn

Corollary 2.1 – Unitarity and Hermiticity of the elements of Sn:
Every single element of Sn is unitary, that is

ρ−1 = ρ† , for all ρ ∈ Sn . (2.20)

Furthermore, the elements of Sn are Hermitian if and only if its corresponding birdtrack is symmetric
under a flip about its vertical axis.1

Another immediate corollary of Note 2.2 is:

1Calling an element of Sn an involution if it is its own inverse, we see that every involution in Sn is Hermitian.
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Exercise 2.6: Calculate the following scalar products in the birdtrack formalism:
〈(123)|(13)〉 in S3, 〈S12|(23)〉 in S3, 〈(234)|(13)(24)〉 in S4.

Solution: We have that

〈(123)|(13)〉 = tr

(( )† )
= tr

( )
= tr

( )

= = N2 . (2.19a)

Furthermore,

〈S12|(23)〉 = tr

(( )† )
= tr

( )
=

1

2

(
tr

( )
+ tr

( ))

=
1

2

(
+

)
=

1

2
(N2 +N) . (2.19b)

Lastly,

〈(234)|(13)(24)〉 = tr
( )† 

 = tr

( )

= tr

( )
= N2 . (2.19c)



Corollary 2.2 – Mirror-symmetric birdtracks:
Let A be a birdtrack operator. If A remains unchanged under a flip about its vertical axis (i.e. A
is mirror-symmetric about its vertical axis) then A is Hermitian with respect to the scalar prod-
uct (2.13).

!
Important: The converse statement of Corollary 2.2, namely that a birdtrack
that is not mirror-symmmetric about its vertical axis is not Hermitian, is not true
in general! In fact, at a later stage in this course, we will see explicit examples of

non-mirror-symmetric operators that turn out to be Hermitian.

If a Hermitian projection operator A projects onto a subspace completely contained in the image of
a Hermitian projection operator B, then we denote this as A ⊂ B, transferring the familiar notation
of sets to the associated projection operators. In particular, A ⊂ B if and only if

A ·B = B ·A = A (2.21)

for the following reason: If the subspaces obtained by the consecutive application of the operators
A and B in any order is the same as that obtained by merely applying A, then not only need the
subspaces onto which A and B project overlap (as otherwise A · B = B · A = 0), but the subspace
corresponding to A must be completely contained in the subspace of B — otherwise the last equality
of (2.21) would not hold. Notice that Hermiticity is crucial for these statements — it does not apply
to a general non-Hermitian operator.

A by now familiar example for this situation is the relation between (anti-) symmetrizers of different
length: a symmetrizer SN can be absorbed into a symmetrizer SN ′ , as long as the index set N is
a subset of N ′, and the same statement holds for antisymmetrizer, [1],

SNSN ′ = SN ′ = SN ′SN and ANAN ′ = AN ′ = AN ′AN ; (2.22a)

this can be proven in a similar way as Proposition 2.1 and is therefore left as an exercise to the
reader. What eq. (2.22a) tells us is that the image of SN ′ is contained in the image of SN ,
im(SN ′) ⊂ im(SN ), and similarly for the images of AN ′ and AN . In a slight abuse of notation we
transfer the inclusion of images to the operators, saying that

SN ′ ⊂ SN and AN ′ ⊂ AN whenever N ⊂ N ′ . (2.22b)

Example 2.2:

Considering the symmetrizers S123 and S12, we have

= = ; (2.23a)

we can think of the “smaller” symmetrizer (over less index kegs) as being absorbed by the
larger one. Thus, by the above notation, S123 ⊂ S12,

⊂ . (2.23b)
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Exercise 2.7: Show explicitly that eq. (2.23a) holds.

Solution: By definition, we may write the symmetrizer S12 as a sum of permutations
ass

S12 = =
1

2

(
+

)
. (2.24)

Acting either of the permutations in the sum (2.24) on S123 merely effects a reordering of the
underlying sum of S123, but nothing else, such that

= = and = = . (2.25)

Thus, it immediately follows that eq. (2.23a) must also hold, as required.
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