
group theory - week 3

Group representations

Georgia Tech PHYS-7143
Homework HW3 due 2019-01-29

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 3.1 1-dimensional representation of anything 1 point
Exercise 3.2 2-dimensional representation of S3 4 points
Exercise 3.3 3-dimensional representations of D3 5 points

Bonus points
Exercise 3.4 Abelian groups 1 point
Exercise 3.5 Representations of CN 1 point

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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EXERCISES

2019-01-22 Predrag Lecture 5 Representation theory
Irreps, unitary reps and Schur’s Lemma.

This lecture covers Chapter 2 Representation Theory and Basic Theorems of
Dresselhaus et al. textbook [1] (click here), up to the proof of Schur’s Lem-
ma. The exposition (or the corresponding chapter in Tinkham [2]) comes from
Wigner’s classic Group Theory and Its Application to the Quantum Mechanics
of Atomic Spectra [3], which is a harder going, but the more group theory you
learn the more you’ll appreciate it. Eugene Wigner got the 1963 Nobel Prize in
Physics, so by mid 60’s gruppenpest was accepted in finer social circles.

2019-01-24 Predrag Lecture 6 Schur’s Lemma
This lecture covers Sects. 2.5 and 2.6 Schur’s Lemma of Dresselhaus et al. text-
book [1] (click here).

3.1 Literature
The structure of finite groups was understood by late 19th century. A full list of finite
groups was another matter. The complete proof of the classification of all finite groups
takes about 3 000 pages, a collective 40-years undertaking by over 100 mathematicians,
read the wiki.

From Emory Math Department: A pariah is real! The simple finite groups fit into
18 families, except for the 26 sporadic groups. 20 sporadic groups AKA the Happy
Family are parts of the Monster group. The remaining six loners are known as the
pariahs. (Check the previous week notes sect. 5.1 Literature for links to the Ree group
and the whole classification.)
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Exercises
3.1. 1-dimensional representation of anything. Let D(g) be a representation of a group

G. Show that d(g) = detD(g) is one-dimensional representation of G as well.
(B. Gutkin)

3.2. 2-dimensional representation of S3.
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EXERCISES

(i) Show that the group S3 can be generated by two permutations:

a =

(
1 2 3
1 3 2

)
, d =

(
1 2 3
3 1 2

)
.

(ii) Show that matrices:

ρ(e) =

(
1 0
0 1

)
, ρ(a) =

(
0 1
1 0

)
, ρ(d) =

(
z 0
0 z2

)
,

with z = ei2π/3, provide proper (faithful) representation for these elements and
find representation for the remaining elements of the group.

(iii) Is this representation irreducible?

(B. Gutkin)

3.3. 3-dimensional representations of D3. The group D3 is the symmetry group of the
equilateral triangle. It has 6 elements

D3 = {E,C,C2, σ(1), σ(2), σ(3)},

where C is rotation by 2π/3 and σ(i) is reflection along one of the 3 symmetry axes.

(i) Prove that this group is isomorphic to S3

(ii) Show that matrices

D(E) =

 1 0 0
0 1 0
0 0 1

 ,D(C) =

 z 0 0
0 1 0
0 0 z2

 ,D(σ(1)) =

 0 0 1
0 −1 0
1 0 0

 ,

(3.1)
generate a 3-dimensional representation D of D3. Hint: Calculate products for

representations of group elements and compare with the group table (see lecture).

(iii) Show that this is a reducible representation which can be split into one dimensional
A and two-dimensional representation Γ. In other words find a matrix R such that

RD(g)R−1 =

(
A(g) 0

0 Γ(g)

)
for all elements g of D3. (Might help: D3 has only one (non-equivalent) 2-dim
irreducible representation).

(B. Gutkin)

3.4. Abelian groups. Let G be a group with only one-dimensional irreducible representa-
tions. Show that G is Abelian.

(B. Gutkin)

3.5. Representations of CN . Find all irreducible representations of CN .
(B. Gutkin)
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