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3.2 DEFINING SPACE, TENSORS, REPS

Definition. In what followsV will always denote théefiningn-dimensional com-

plex vector representation space, that is to say the initial, “elementary multiplet”
space within which we commence our deliberations. Along with the defining vector
representation spadé comes thalual n-dimensional vector representation space

V. We shall denote the corresponding elemerit diy raising the index, as ir8(3),

so the components of defining space vectors, resp. dual vectors, are distinguished
by lower, resp. upper indices:

r=(x1,22,...,Tn), XEV
z=(z',2%...,2"), xe€V. (3.10)

Definition. LetG be a group of transformations acting linearlylénwith the action
of a group elemeny € G on a vector: € V given by anjn x n] matrix G
al = G.lr,  a,b=1,2,...,n. (3.11)
We shall refer ta7,” as thedefining repof the groupG. The action ofy € G on a
vectorg € V is given by thedual rep[n x n] matrix G':
' = 2P (G = Gt (3.12)

In the applications considered here, the gréupill almost always be assumed
to be a subgroup of thenitary group in which caseG—! = GT, and' indicates
hermitian conjugation:

(GNa" = (Gy")" =G (3.13)
Definition. A tensorz € VP @ V¢ transforms under the action gfc G as
= Gy e, (3.14)

where thel’? @ V9 tensor repof g € G is defined by the group acting on all indices
of x.

Gyl et =GN G, G, Gy M Gy, P Gy, M (3.15)

b1...bgq ) Cp...C2C1
Tensors can be combined into other tensors by
(a) addition:
2gh¢ = i + By, aBeC, (3.16)
(b) product:
200t = xS, (3.17)

(c) contraction:Setting an upper and a lower index equal and summing over all of
its values yields a tenserc VP~ @ V4~1 without these indices:

be...d __ _abe...d ad __ _abc d
Ze,.,f _Ie...afv Ze = Te Yep- (318)

A tensorz € VP ® V4 transforms linearly under the action gf so it can be
considered a vector in the= n?T4-dimensional vector spadé = V? @ V4. We
can replace the array of its indices by one collective index:

X = it 2% 3.19
by.
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One could be more explicit and give a table like

11...1 21...1 nn...n
L1 =Ty 1 s T2=T1. 1 55 Xd =Ty .n > (320)

but that is unnecessary, as we shall use the compact index notation only as a short-
hand.

Definition. Hermitian conjugatioris effected by complex conjugation and index
transposition:

(h")ede = (h5a®)" . (3.21)

cde —
Complex conjugation interchanges upper and lower indices, &slif){ transposi-
tion reverses their order. A matrix lermitianif its elements satisfy
(Mh¢ = M. (3.22)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as\/,* = (M), = M%,.

Definition. The tensor dual te,, defined by 8.19 has form
= glebr (3.23)

q---a20a71

Combined, the above definitions lead to the hermitian conjugation rule for collective
indices: a collective index is raised or lowered by interchanging the upper and lower
indices and reversing their order:

- aiaz...aq a bp...bl
a—{ blbp} “ _{aq...agal}' (324)
This transposition convention will be motivated further by the diagrammatic rules

of section4. L

The tensor rep3. 15 can be treated as[dx d] matrix
G,° = Galgf,‘,‘.‘bl;q’gqp-.-.'.g?lcl ’ (3.25)
and the tensor transformatioB. {4 takes the usual matrix form
zl, =G s (3.26)

[e3

3.3 INVARIANTS

Definition. The vectoly € V' is aninvariant vectoiif for any transformatioy € G

q=0Gq. (3.27)
Definition. A tensorz € VP ® V1 is aninvariant tensoiif forany g € G
Ty 5 = G Gy Gy TGy Ty (3.28)
We can state this more compactly by using the notatior &g
To = Golrs. (3.29)

Here we treatthe tensof ' %,

1~~~bq

as avector ifidxd]-dimensional spacd,= n?*q.
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If a bilinear formm/(z, y) = %M,y is invariant for allg € G, the matrix
M.’ = G,°G®4M.¢ (3.30)
is aninvariant matrix Multiplying with G¢ and using the unitary conditioB(13),
we find that the invariant matriceemmutewith all transformationg € G:
[G,M] =0. (3.31)
If we wish to treat a tensor with equal number of upper and lower indices as a
matrixM : VP @ VI = VP @ V4,
M,? =M Zi_‘f?g;“tf;;;;j;cl , (3.32)
then the invariance conditior829 will take the commutator form3(31). Our
convention of separating the two sets of indices by a comma, and reversing the
order of the indices to the right of the comma, is motivated by the diagrammatic
notation introduced below (seé.()).

Definition. We shall refer to an invariant relation betwegwectors inV andgq
vectors inV/, which can be written as a homogeneous polynomial in terms of vector
components, such as

h(z,y, 2,7, 5) = h® cqewyyasriz®, (3.33)
as aninvariantin V¢ @ V? (repeated indices, as always, summed over). In this
example, the coefficients® ;. are components of invariant tengoe V2 ® V2,

obeying the invariance conditio.¢9.
Diagrammatic representation of tensors, such as

habcde = (334)

a b c de

makes it easier to distinguish different types of invariant tensors. We shall explain
in great detail our conventions for drawing tensors in secfidnsketching a few
simple examples should suffice for the time being.

The standard example of a defining vector space is our 3-dimensional Euclidean
spacelV = V is the space of all 3-component real vectois= 3), and exam-
ples of invariants are the lengiz, z) = ¢;;2,2; and the volumé/ (z,y, z) =
€12y, 2. We draw the corresponding invariant tensors as

0ij =1 —J, €ijr= /]\ : (3.35)

i j k

Definition. A composecthvariant tensor can be written as a product and/or contrac-
tion of invariant tensors.

Examples of composed invariant tensors are
i m n

6ij€klm = | A\ ) Eijn*L(SmnEnkl - M . (336)

i k1 m ij ko
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The first example corresponds to a product of the two invaribitsy)V (z, r, s).
The second involves an indegntraction we can write this a¥'(z, y, %)V(z, r,8).

In order to proceed, we need to distinguish the “primitive” invariant tensors from
the infinity of composed invariants. We begin by defining a finite basis for invariant
tensors inl’? @ V4

Definition. A tree invariantcan be represented diagrammatically as a product of
invariant tensors involving no loops of index contractions. We shall denofe-by
{to,t1...t,—1} @ (maximal) set of- linearly independent tree invariants <

VP @ V4. As any linear combination af, can serve as a basis, we clearly have a
great deal of freedom in making informed choices for the basis tensors.

Example:Tensors 8.36) are tree invariants. The tensor
i

(3.37)

hijkl = €ims€inmCkrn€lisr =

with intermediate indicesn, n,r, s summed over, is not a tree invariant, as it
involves a loop.

Definition. An invariant tensor is called primitive invariant tensor if it cannot
be expressed as a linear combination of tree invariants composed from lower-rank
primitive invariant tensors. Leé® = {p1, p2, . . . P&} be the set of all primitives.
For example, the Kronecker delta and the Levi-Civita ten3@&% are the primi-
tive invariant tensors of our 3-dimensional space. The loop contra&ism) (s not
aprimitive, because by the Levi-Civita completeness relatbag it reduces to a
sum of tree contractions:
i | )
i | i
= ) C + = 0ij0k + 0it0jk (3.38)
_ J k j—k
] k

(The Levi-Civita tensor is discussed in secti®f.)

Primitiveness assumption Any invarianttensoh € V? @ V4 can be expressed
as a linear sum over the tree invariaits” V¢ @ V?:

h = Z h%, . (3.39)
acT

In contradistinction to arbitrary composite invariant tensors, the number of tree
invariants for a fixed number of external indices is finite. For example, given bilinear
and trilinear primitives? = {4,;, fi;x }, any invarianttensok € V? (here denoted
by a blob) must be expressible as

Q-+ =2 (3.40)
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;b\x

= +D) C (p=4)
+EX+FH+GI+HA’
— T ) AN+ =5) (3.41)

3.3.1 Algebra of invariants

Any invariant tensor of matrix form3(32
M,P —M;fllai g dy...dy

Y Cq...C2C1
thatmapd/? @ VP — V9® VP can be expanded in the basis39. In this case the
basis tensors,, are themselves matrices ¥ ® V? — V7 ® VP, and the matrix
product of two basis elements is also an elemenfof VV? — V¢ ® VP and can
be expanded in anelement basis:

tats = Y (Ta)s"ty . (3.42)
teT

As the number of tree invariants composed from the primitives is finite, under matrix
multiplication the basets, form a finiter-dimensional algebra, with the coefficients
(1) 8" giving their multiplication table. As in3.7), the structure constants, )"
form a[rxr]-dimensional matrix rep df,, acting on the vectafe, t1, to, - - t,—1).
Given a basis, we can evaluate the matriegs (1)3”, (12)37, - (7+—1)g” and
their eigenvalues. For at least one of combinations of these matrices all eigenvalues
will be distinct (or we have failed to choose a good basis). The projection operator
technique of sectioB.5will enable us to exploit this fact to decompose Hfe VP
space intor irreducible subspaces.

This can be said in another way; the choice of bésig1, to - - - t,.—1} is arbi-
trary, the only requirement being that the basis elements are linearly independent.
Finding a(7. ) 37 with all eigenvalues distinct is all we need to construct an orthog-
onal basig{P, Py, Po,---P,._1}, where the basis matric&; are the projection
operators, to be constructed below in secBdi For an application of this algebra,
see sectiorf.11
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Diagrammatic notation

Some aspects of the representation theory of Lie groups are the subject of this mono-
graph. However, it is not written in the conventional tensor notation but instead in
terms of an equivalent diagrammatic notation. We shall refer to this style of carrying
out group-theoretic calculations bsdtracks(and so do reputable journalsl]).

The advantage of diagrammatic notation will become self-evident, | hope. Two of
the principal benefits are that it eliminates “dummy indices,” and that it does not
force group-theoretic expressions into the 1-dimensional tensor format (both being
means whereby identical tensor expressions can be made to look totally different).
In contradistinction to some of the existing literature in this manuscript | strive to
keep the diagrammatic notation as simple and elegant as possible.

4.1 BIRDTRACKS

We shall often find it convenient to represent agglomerations of invariant tensors
by birdtracks, a group-theoretical version of Feynman diagrams. Tensors will be
represented byerticesand contractions bgropagators

Diagrammatic notation has several advantages over the tensor notation. Diagrams
do not require dummy indices, so explicit labeling of such indices is unnecessary.
More to the point, for a human eye it is easier to identify topologically identical dia-
grams than to recognize equivalence between the corresponding tensor expressions.

If readers find birdtrack notation abhorrent, they can surely derive all results of
this monograph in more conventional algebraic notations. To give them a sense of
how that goes, we have covered our tracks by algebra in the derivation éfthe
family, chapte20, where not a single birdtrack is drawn. It it is like speakitadian
without moving hands, if you are into that kind of thing.

In the birdtrack notation, the Kronecker delta is a propagator:

5 =b —e— a. (4.1)

For areal defining space there is no distinction betwdéandV/, or up and down
indices, and the lines do not carry arrows.

Any invariant tensor can be drawn as a generalized vertex:

d ——
Xo= X =1 X |. 4.2)
b =——
C =—>—

Whether the vertex is drawn as a box or a circle or a dot is a matter of taste.
The orientation of propagators and vertices in the plane of the drawing is likewise
irrelevant. The only rules are as follows:
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1. Arrows pointaway from the uppeindices andoward the loweindices; the
line flow is “downward,” from upper to lower indices:

a d
hed — }C{ . 4.3)
C

b

2. Diagrammatic notation must indicate which in (out) arrow corresponds to
the first upper (lower) index of the tensor (unless the tensor is cyclically
symmetric);

Here the leftmost
index is the first index

abed = % . (4.4)

a b c de

3. The indices are read in tlteunterclockwiserder around the vertex:

N
b
b o X
X, =\ d=—] . (4.5)
(S)
Order of readin

the indices

(The upper and the lower indices are read separately in the counterclockwise
order; their relative ordering does not matter.)

In the examples of this section we index the external lines for the reader’s conve-
nience, butindices can always be omitted. An internal line implies a summation over
corresponding indices, and for external lines the equivalent points on each diagram
represent the same index in all terms of a diagrammatic equation.

Hermitian conjugation3.21) does two things:

1. Itexchanges the upper and the lower indi¢es, it reverses the directions of
the arrows.

2. ltreverses the order of the indices,, it transposes a diagram into its mirror
image. For exampleX T, the tensor conjugate td.©), is drawn as

Xe=x4 =| x' lo—a, (4.6)

cba

..a2a1

XY = Xt Yo 5 = X — Y | (47)
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In sections3.1-3.2and here we define the hermitian conjugation &n@Z matrices
M: VP VI — VP ®V7inthe multi-index notation

D, —— ——d,
b .5‘ ¢ id
a:—_)— M —)—_C: (48)
8=y ——C,

in such a way that the matrix multiplication

< V) V) V)

= M 559 N 55 = = MN S (4.9)

H - H
> > > >

and the trace of a matrix
C——

can be drawn in the plane. Notation in which all internal lines are maximally crossed
at each multiplicationj19 is equally correct, but less pleasing to the eye.

4.2 CLEBSCH-GORDAN COEFFICIENTS

Consider the product

—_

1 C (4.11)

of the two terms in the diagonatpresentationf a projectionoperator. This

matrix has nonzerentriesonly in the d, rowsof subspacé’,. We collectthemin

a[dy x d] rectangular matrixC,)¢, o =1,2,...d, 0 = 1,2,...dy:

(C)T - (O

Cy = : : dy . (4.12)
(€3,

d

The indexx in (Cy)g stands for all tensor indices associated withdhe n?+4-
dimensional tensor spad@xV <. In the birdtrack notation these indices are explicit:

——

D T— =" 4.13

(C)\)C”aq...aga] =— ; H ( . )
——
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Such rectangular arrays are calléktbsch-Gordan coefficienfeereafter referred
to asclebschedor short). They are explicit mappings — V. The conjugate
mappingV, — V is provided by the product

ot 1 , (4.14)

which defines th@lx d,| rectangular matrixC*)?, o = 1,2, ...d,0 = 1,2,...d:

(CMH ... (eHP
C)\: . . d
| (CA)b
dx
b, ——
ajas...a b2 : Ao
(COp5 =" 5] e (4.15)

. ——
8y —>

The two rectangular Clebsch-Gordan matricgsandC), are related by hermitian
conjugation.

The tensors, which we have considered in secdidf transform as tensor prod-
ucts of the defining rep3(14). In general, tensors transform as tensor products of
various reps, with indices running over the corresponding rep dimensions:

ay = 172,...,d1
ag = 1,2,...,d2
agriiodrta where (4.16)
ap+q = 1723-'-7dp+q-
The action of the transformatignon the indexay, is given by theldy x di] matrix
repGy.
Clebsches are notoriously index overpopulated, as they require a rep label and
a tensor index for each rep in the tensor product. Diagrammatic notation alleviates
this index plague in either of two ways:

1. One can indicate a rep label on each line:

a _‘_ﬁ S
Contv G0 — gy g S 8, (4.17)
A a, |
v
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(Anindex, if written, is written at the end of aline; a rep label is written above
the line.)

2. One can draw the propagators (Kronecker deltas) for different reps with dif-
ferent kinds of lines. For example, we shall usually draw the adjoint rep with
a thin line.

By the definition of clebsche8(49, the \ rep projection operator can be written
out in terms of Clebsch-Gordan matrig@3C\:

C*Cy=P,, (nosumon)
dy
(CNr 5 (O ) s e ity = (P 5 oot (4.18)
: —— T F)>\
—_— > > >

A specific choice of clebsches is quite arbitrary. All relevant properties of projec-
tion operators (orthogonality, completeness, dimensionality) are independent of the
explicit form of the diagonalization transformatich Any set ofC'y is acceptable
as long as it satisfies the orthogonality and completeness conditions. Eroin (
and (4.14) it follows thatC'y are orthonormal

C\CHF =051,
(CA) ?leazb ap(c,u)ap agaﬁa 5,6’5'u

A S S (4.19)

y - A A

>

Herel is the[d) x d,] unit matrix, andCy’s are multiplied agd, x d] rectangular
matrices.
Thecompleteness relatiof3.57)

Y crCa=1,  ([dx d] unit matrix),

3 (CM O (Cr)as o, = 501682 6y
A
A p—e— ——
Yo o =T (4.20)
A —— > ——
CAP, =d\C*,
P \CH=46C",  (nosumon\,pu), (4.22)

follows immediately from 8.50 and @.19.
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4.3 ZERO- AND ONE-DIMENSIONAL SUBSPACES

If a projection operator projects onto a zero-dimensional subspace, it must vanish
identically:

dy=0 = Py=""1 < T =0. (4.22)

This follows from 3.49; d,, is the number of 1's on the diagonal on the right-hand
side. Ford, = 0 the right-hand side vanishes. The general foriPgfis
-
Py=> My, (4.23)
k=1
whereM . are the invariant matrices used in construction of the projector operators,
and ¢, are numerical coefficients. Vanishing Bf, therefore implies a relation
among invariant matriced ;.
If a projection operator projects onto a 1-dimensional subspace, its expression, in
terms of the clebscheg (L8, involves no summation, so we can omit the interme-
diate line

h=l = P=", - = (O, (G

Cp...C2C1 °

(4.24)
For any subgroup ofU(n), the reps are unitary, with unit determinant. On the
1-dimensional spaces, the group acts trivialy= 1. Hence, ifd, = 1, the clebsch
Cy in (4.24 is an invariant tensor i@ V41,
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Recouplings

Clebsches discussed in sectib project a tensor iV? @ V7 onto a subspaca.

In practice one usually reduces a tensor step by step, decomposing a 2-particle state
at each step. While there is some arbitrariness in the order in which these reductions
are carried out, the final result is invariant and highly elegant: any group-theoretical
invariant quantity can be expressed in terms of Wigner 3- apdd@efficients.

5.1 COUPLINGS AND RECOUPLINGS

We denote the clebsches forz v — A by

A < ——\ A —&
e , Py = —— . (5.1)
—— —— —

\Y

Here \, u, v are rep labels, and the corresponding tensor indices are suppressed.
Furthermore, ifu andv are irreducible reps, the same clebsches can be used to
projecty ® A — v

dy
P, = : (5.2)
andv @ A\ — i
u
d
P, = . (5.3)
A

A
Here the normalization factors come frd? = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:

u
A 1

= T \ .
\Y

In this definition one has to keep track of the ordering of the lines around the vertex.
If in some context the birdtracks look better with two legs interchanged, one can

U
(5.4)
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L_/{ - LQH< (5.5)

While all sensible clebsches are normalized by the orthonormality rel&ting (
in practice no two authors ever use the same normalization for 3-vertices (in other
guises known as 3-coefficients, Gell-Manm matrices, Cartan roots, Dirag
matricesgtc). For this reason we shall usually not fix the normalization

U
L, &
LC)—(E:CL)\—(—G, ay) = dv’ (56)
A

\Y

leaving the reader the option of substituting his or her favorite choice (suncl&a§
if the 3-vertex stands for GeII-Maniq/\i, etc).

To streamline the discussion, we shall drop the arrows and most of the rep labels
in the remainder of this chapter — they can always easily be reinstated.

The above three projection operators now take a more symmetric form:

use Yutsis’s notationdc9:

1 u
Py=—— )2
a) v
\Y
1
P,=— >
GM A
I v 20
P,=— . (5.7)
ay

u
In terms of 3-vertices, the completeness relatib2() is

d H
=y o> (5.8)
U
) @ v
\Y
Any tensor can be decomposed by successive applications of the completeness
relation:

u

—_— A
1 O>—C 1 12A AE
= — = _— H
a) ay) a
- A A1
1 11 A
A v p

Hence, if we know clebsches for® 1 — v, we can also construct clebsches for
ARu®r®...— p. However, there is no unique way of building up the clebsches;
the above state can equally well be reduced by a different coupling scheme

= iii% (5.10)
—_— Aoy ax ay Gy H . .
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Consider now a process in which a particle in the mapteracts with a particle
in the repr by exchanging a particle in the rep
o—1r—H

w (5.11)

p——
The final particles are in repsando. To evaluate the contribution of this exchange
to the spectroscopic levels of ther particles system, we insert the Clebsch-Gordan
series b.8) twice, and eliminate one of the sums by the orthonormaligtien (5.6):

—t ¢ dy dy ° OAM H
M R U WU S " (5.12)
Y- T- e

P v

By assumptiorh is anirrep, so we have arecoupling relation between the exchanges

in “s” and “t channels™:

U‘EH

? " L0\, o 1]
w = e

E dx 5 A >—< .

p v A @p ’ v
v

We shall refer toe as 34 coefficients ant@ as 64 coefficients, and commit
ourselves to no particular normalization convention.

In atomic physics it is customary to abs@ into the 3-vertex and define a;3-
symbol 238 287, 347

(2 ¢ ?y):(—l)w\/:@ A_<. (5.14)

Herea = 1,2,...,d,, etc, are indices), p, v rep labels and the phase conven-
tion. Fixing a phase convention is a waste of time, as the phases cancel in summed-
over quantities. All the ugly square roots, one remembers from quantum mechanics,

come from sticking, /e into 3-j symbols. Wigner$47] 6-j symbolsare related
to our 6+ coefficientdy

(s z}%@>p®. 519

The name3n-;j symbol comes from atomic physics, where a recoupling involves
3n angular momentgy, jo, .. ., j3, (See sectioi4.?).

Most of the textbook symmetries of and relations betwegsydnbols are obvious
from looking at the corresponding diagrams; others follow quickly from complete-
ness relations.

If we know the necessary s, we can compute the level splittings due to single
particle exchanges. In the next section we shall show that a far stronger claim can
be made: given the 3- andjeoefficients, we can compuddl multiparticle matrix
elements.

(5.13)
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Vertex Self-energy
Skeletons insertions insertions

Total
number

12-j

O
D
& AD

B = oHed

S aIect):
& = =g
o HAD
Ny

16

Table 5.1 Topologically distinct types of Wign&n-; coefficients, enumerated by drawing
all possible graphs, eliminating the topologically equivalent ones by hand. Lines
meeting in any 3-vertex correspond to any three irreducible representations with
a nonvanishing Clebsch-Gordan coefficient, so in general these graphs cannot be
reduced to simpler graphs by means of such as the Lie algélta and Jacobi
identity @.49.

5.2 WIGNER 3n-5 COEFFICIENTS

An arbitrary higher-order contribution to a 2-particle scattering process will give a
complicated matrix element. The corresponding energy levels, crossseetions,

are expressed in terms of scalars obtained by contracting all tensor indices; diagram-
matically they look like “vacuum bubbles,” withr internal lines. The topologically
distinct vacuum bubbles in low orders are given in tahle

In group-theoretic literature, these diagrams are cdlleg symbols, and are

studied in considerable detail. Fortunately, 8ny;j symbol that contains as a sub-
diagram a loop with, let us say, seven vertices,
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can be expressed in terms@fj coefficients. Replace the dotted pair of vertices by
the cross-channel surf.(L3:

de@®@ _ : , (5.16)

Now the loop has six vertices. Repeating the replacement for the next pair of vertices,
we obtain a loop of length five:

A

D @ >
6666

Repeating this process we can eliminate the loop altogether, producing 5-vertex-
trees times bunches of geoefficients. In this way we have expressed the original
3n-j coefficients in terms 08(n-1)-j coefficients and-; coefficients. Repeating

the process for thg(n-1)-j coefficients, we eventually arrive at the result that

(Bn—j) = Z (products o@) . (5.18)

5.3 WIGNER-ECKART THEOREM

(5.17)

For concreteness, consider an arbitrary invariant tensor with four indices:

¥y oo
u &)
vV op

wherepu, v, p andw are rep labels, and indices and line arrows are suppressed. Now
insert repeatedly the completeness relat@)(to obtain

AR E AR
=%

u/ﬂ\ (5.20)

[
@M
®|,_

Il
2
Y
Q

.
Q®w|’—‘
R
4@
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In the last line we have used the orthonormality of projection operators — as in
(5.13 or (5.23.

In this way any invariant tensor can be reduced to a sum over clebsihesat-
ics) weighted byreduced matrix elements

(T)a = s.J . (5.21)
a7

This theorem has many names, depending on how the indices are groupas. If
a vector, then only the 1-dimensional reps (singlets) contribute

singlet
T.= > ]°. (5.22)
A H
a
If T is a matrix, and the reps, i are irreducible, the theorem is call&thur’s

Lemma(for an irreducible rep an invariant matrix is either zero, or proportional to
the unit matrix):

1
Tl =" H—“—d—ézi]ﬁ—“ St - (5.23)
m

If T is an “invariant tensor operator,” then the theorem is called¥fgner-Eckart

theorem[ 347, 107:
A A
o M ) - P
(E)a_a b= Z AU v
P
\L/

WA
== -<-< (5.24)
v
\2/

(assuming that appears only once ik ® i Kronecker product). If” has many in-
dices, as in our original examplg.(9, the theorem is ascribed to Yutsis, Levinson,
and Vanagasi59. The content of all these theorems is that they reduce spectr
scopic calculations to evaluation of “vacuum bubbles” or “reduced matrix elements”
(5.20.

The rectangular matriceg” )¢ from (3.27 do not look very much like the
clebsches from the quantum mechanics textbooks; neither does the Wigner-Eckart
theorem in its birdtrack versiorb(24). The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch far® Ay — )\ is written as

A
A lem,
m—(—@ = (Ao Am|Armi Agma) . (5.25)
mZ
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Representing thgly x d,] rep of a group element diagrammatically by a black
triangle,

Dy (9) = m—4—m', (5.26)
we can write the Clebsch-Gordan serigsif) as
Le— A «
L{— N z/\: —<—>_‘_<—<—
DY L (9D, (9)=

Z <)\1m1)\2m2|/\1)\25\7h>D§wﬁ1 (g)<)\1)\2/~\ﬁl1|/\1m/1/\2m/2> .
X,

An “invariant tensor operator” can be written as

m
A
A
(Aama| T [ Am) = mzi*(;\:ml- (5.27)
1

In the bra-ket formalism, the Wigner-Eckart theore&sr2{) is written as
Mama|TAIAm1) = (A Aama| AmAimy) T (A, M z) (5.28)

where the reduced matrix element is given by

1
T A ) =—— Y (Andina A dans) (Aena| T Ana)

dkz ni,ma,n
A
1
= 5.29
- (5.29)
A

2
We do not find the bra-ket formalism convenient for the group-theoretic calculations
that will be discussed here.



4.8 IRRELEVANCY OF CLEBSCHES

As was emphasized in sectidr?, an explicit choice of clebsches is highly arbitrary;

it corresponds to a particular coordinatization of #thedimensional subspadé, .

For computational purposes clebsches are largely irrelevant. Nothing that a physicist
wants to compute depends on an explicit coordinatization. For example, in QCD the
physically interesting objects are color singlets, and all color indices are summed
over: one needs only an expression for the projection operatd§,(not for the

Cy’s separately.

Again, a nice example is the Lie algebra generdfor&xplicit matrices are often
constructed (Gell-Mann; matrices, Cartan’s canonical weights); however, in any
singlet they always appear summed over the adjoint rep indices, 4s3if). (The
summed combination of clebsches is just the adjoint rep projection operator, a very
simple object compared with explicit, matrices P 4 is typically a combination
of a few Kronecker deltas), and much simpler to use in explicit evaluations. As we
shall show by many examples, all rep dimensions, casiratts,are computable
once the projection operators for the reps involved are known. Explicit clebsches
are superfluous from the computational point of view; we use them chiefly to state
general theorems without recourse to any explicit realizations.

However, if one has to compute noninvariant quantities, such as subgroup embed-
dings, explicit clebsches might be very useful. Gell-Mah#] invented\; matrices
in orderto embedU (2) of isospin intaSU (3) of the eightfold way. Cartan’s canon-
ical form for generators, summarized by Dynkin labels of a rep (talé)ds a very
powerful tool in the study of symmetry-breaking chaifis | 126. The same can
beachieved with decomposition by invariant matrices (a nonvanishing expectation
value for a direction in the defining space defines the little group of transformations
in the remaining directions), but the tensorial technology in this context is underde-
veloped compared to the canonical methods. And, as Sted1ihrightly points
out, if you need to check your calculations against the existing literature, keeping
track of phase conventions is a necessity.
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4.9 ABRIEF HISTORY OF BIRDTRACKS

Ich wollte nicht eine abstracte Logik in Formeln darstellen,
sondern einen Inhalt durch geschriebene Zeichen in
genauerer und Ubersichtlicherer Weise zum Ausdruck brin-
gen, als es durch Worte mdglich ist.

— Gottlob Frege

Inthis monograph, conventional subjects — symmetric group, Lie algebras (and, toa
lesser extent, continuous Lie groups) — are presented in a somewhat unconventional
way, in a flavor of diagrammatic notation that | refer to as “birdtracks.” Similar
diagrammatic notations have been invented many times before, and continue to be
invented within new research areas. The earliest published example of diagrammatic
notation as a language of computation, not a mere mnemonic device, appears to
be F.L.G. Frege’s 187Begriffsschrift{127], at its time a revolution that laid the
foundation of modern logic. The idiosyncratic symbolism was not well received,
ridiculed as “incorporating ideas from Japanese.” Ruined by costs of typesetting,
Frege died a bitter man, preoccupied by a deep hatred of the French, of Catholics,
and of Jews.

According to Abdesselam and Chipalkattj,[another precursor of diagrammatic
methods was the invariant theory discrete combinatorial structures introduced by
Cayley [0, Sylvester B27, and Clifford [61, 183, reintroduced in a modern,
diagrammatic notation by Olver and Shakiban}, 269.

In his 1841 fundamental paperd/ on the determinants today known as “Jaco-
bians,” Jacobi initiated the theory of irreps of the symmetric gr8ypSchur used
the S, irreps to develop the representation theory-df(n; C) in his 1901 disser-
tation [307], and already by 1903 the Young tableaGx§ 339 (discussed here in
chapter9) came into use as a powerful tool for reduction of b§thend G L (n; C)
representations. In quantum theory the group of chdicé€][is the unitary group
U(n), rather than the general linear groGfi.(n; C). Today this theory forms the
core of the representation theory of both discrete and continuous groups, described
in many excellent textbook&B8g 64, 350, 138 26, 11,317, 132,133 22§. Permu-
tations and their compositions lend themselves naturally to diagrammatic represen-
tation developed here in chapt&rin his extension of th&/L(n; C) Schur theory
to representations afO(n), R. Brauer B1] introduced diagrammatic notation for
d;; in order to represent “Brauer algebra” permutations, index contractions, and
matrix multiplication diagrammatically, in the form developed here in chalier

His equation (39)
5 Do
//—:

(send index 1 to 2, 2 to 4, contract ingoiry-(4), outgoing ( - 3)) is the earliest
published proto-birdtrack | know about.

R. Penrose’s papers are the first (known to me) to cast the Young projection
operators into a diagrammatic form. In this monograph | use Penrose diagrammatic
notation for symmetrization operatof&{1], Levi-Civita tensors 83, and “strand
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networks” 287. For several specific, few-index tensor examples, diagratitm
Young projection operators were constructed by Canningy Mandula 227, and
Stedman B19.

It is quite likely that since Sophus Lie's days many have doodled birdtracks
in private without publishing them, partially out of a sense of gravitas and in no
insignificant part because preparing these doodles for publications is even today a
painful thing. | have seen unpublished 1960s course notes of J. G. Belirdant}
very much like the birdtracks drawn here in chapt®+3, and there are surely many
other such doodles lost in the mists of time. But, citing Frepg&], “the comfort
of the typesetter is certainly not ttleermmum bonurhand now that the typesetter
is gone, it is perhaps time to move on.

The methods used here come down to us along two distinct lineages, one that can
be traced to Wigner, and the other to Feynman.

Wigner’s 1930s theory, elegantly presented in his group theory monogiagh [
is still the best book on what physics is to be extracted from symmetries, be it
atomic, nuclear, statistical, many-body, or particle physics: all physical predictions
(“spectroscopic levels”) are expressed in terms of Wigrier'g coefficients, which
can be evaluated by means of recursive or combinatorial algorithms. As explained
here in chaptes, decomposition.8) of tensor products intoirreducible repsimplies
that any invariant number characterizing a physical system with a given symmetry
corresponds to one or several “vacuum bubbles,” trivalent graphs (a graph in which
every vertex joins three links) with no external legs, such as those listed irbtdble

Since the 1930s much of the group-theoretical work on atomic and nuclear
physics had focused on explicit construction of clebsches for the rotation group
SO(3) ~ SU(2). The first paper recasting Wigner's theory in graphical form ap-
pears to be a 1956 paper by I. B. Levinsan{], further developed in the influental
1960 monograph by A. P. Yutsis (later A. Jucys), |. Levinson and V. Vanagéas [
published in English in 1962 (see also refs)§, 33]). A recent contribution to this
tradition is the book by G. E. Stedma#l[9], which covers a broad range of appli-
cations, including the methods introduced in the 1984 version of the present mono-
graph BZ). The pedagogical work of computer graphics pioneer J. mrB[25],
who was inspired by Stedman’s book, also deserves mention.

The main drawback of such diagrammatic notations is lack of standardization,
especially in the case of clebsches. In addition, the diagrammatic notations designed
for atomic and nuclear spectroscopy are complicated by various phase conventions.

R. P. Feynman went public with Feynman diagrams on my second birthday, April
1, 1948, at the Pocono Conference. The idiosyncratic symbolism (Gleick [
describes it as “chicken-wire diagrams”) was not well received by Bohr, Dirac,
and Teller, leaving Feynman a despondent mari,[308 237]. The first Feynman
diagram appeared in print in Dyson'’s article0f; 309 on the equivalence of (at
that time) the still unpublished Feynman theory and the theories of Schwinger and
Tomonaga.

If diagrammatic notation is to succeed, it need be not only precise, but also beau-
tiful. It is in this sense that this monograph belongs to the tradition of R. P. Feynman,
whose sketches of the very first “Feynman diagrams” in his fundamental 1949 Q.E.D.
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paper [L19 309 are beautiful to behold. Similarly, R. Penrose’s], 287 way of
drawing symmetrizers and antisymmetrizers, adopted here in chgpseimbued

with a very Penrose aesthetics, and even though the print is black and white, one
senses that he had drawn them in color.

In developing the “birdtrack” notation in 1975 | was inspired by Feynman di-
agrams and by the elegance of Penrose’s bingid]] | liked G. 't Hooft's 1974
double-line notation foil/ (n) gluon group-theory weights.pd, and have intro-
duced analogous notation f6iU (n), SO(n) andSp(n) in my 1976 paper{d]. In
an influential paper, M. Creutz[] has applied such notation to the evaluation of
SU (n) lattice gauge integrals (described here in cha@jtérhe challenge was to de-
velop diagrammatic notation for the exceptional Lie algebras, and | succeg&ded |
except for B, which came later.

In the quantum groups literature, graphs composed of verticéd) @are called
trivalent The Jacobi relatior4(48 in diagrammatic form was first publishedd]
in 1976; though it seems surprising, | have not found it in the earlier literature. This
set of diagrams has since been given the moniker “IHX” by D. Bar-Natéh [

In his Ph.D. thesis Bar-Natan has also renamed the Lie algebra commuatair (
the “STU relation,” by analogy to Mandelstam’s scattering cross-channel variables
(s, t,u), and the full antisymmetry of structure constardtsi¢) the “AS relation.”

So why call this “birdtracks” and not “Feynman diagrams”? The difference is
that here diagrams are not a mnemonic device, an aid in writing down an integral
that is to be evaluated by other techniques. In our applications, explicit construc-
tion of clebsches would be superfluous, and we need no phase conventions. Here
“birdtracks” are everything—unlike Feynman diagrams, here all calculations are
carried out in terms of birdtracks, from start to finish. Left behind are blackboards
and pages of squiggles of the kind that m&genice Durand exclaim: “What are
these birdtracks!?” and thus give them the name.


http://theory1.hep.wisc.edu/~bdurand/
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