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A PREVIEW 9

Once the projection operators are known, all interesting spectroscopic numbers can
be evaluated.

The foregoing run through the basic concepts was inevitably obscure. Perhaps
working through the next two examples will make things clearer. The first example
illustrates computations with classical groups. The second example is more inter-
esting; it is a sketch of construction of irreducible reps ofE6.

2.2 FIRST EXAMPLE: SU(n)

How do we describe the invariance group that preserves the norm of a complex
vector? Thelist of primitivesconsists of a single primitive invariant,

m(p, q) = δab p
bqa =

n∑

a=1

(pa)
∗qa .

The Kroneckerδab is the only primitive invariant tensor. We can immediately write
down the twoinvariant matriceson the tensor product of the defining space and its
conjugate,

identity : 1a c
d,b = δab δ

c
d =

��
��
��

��
��
��

��
��
��

��
��
��

d

a

c

b

trace : T a c
d,b = δadδ

c
b =

c

a b

d
.

The characteristic equationfor T written out in the matrix, tensor, and birdtrack
notations is

T 2=nT

T a f
d,e T

e c
f,b= δadδ

f
e δ

e
fδ

c
b = nT a c

d,b

= ������������ ������������ = n ������������ .

Here we have usedδee = n, the dimension of the defining vector space. The roots
areλ1 = 0, λ2 = n, and the correspondingprojection operatorsare

SU(n) adjoint rep: P1 = T−n1
0−n = 1− 1

nT

������������ =
��
��
��

��
��
��

��
��
��
��

− 1
n ������������

U(n) singlet: P2 = T−0·1
n−0 = 1

nT = 1
n ������������ .

(2.5)

Now we can evaluate any number associated with theSU(n) adjoint rep, such as
its dimension and various casimirs.

Thedimensionsof the two reps are computed by tracing the corresponding pro-
jection operators (see section3.5):

SU(n) adjoint: d1=trP1 =
��
��
��
��

��
��
��
��

= − 1

n
= δbbδ

a
a − 1

n
δbaδ

a
b

=n2 − 1

singlet: d2=trP2 =
1

n
= 1 .
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To evaluatecasimirs, we need to fix the overall normalization of the generatorsTi

of SU(n). Our convention is to take

δij = trTiTj =
��
��
��

��
��
��

���
���
���

���
���
���

.

The value of the quadratic casimir for the defining rep is computed by substituting
the adjoint projection operator:

SU(n) : CF δ
b
a = (TiTi)

b
a= ��

��
��

��
��
��

ba
=

b��
��
��

��
��
��

��
��
��
��

a
− 1

n ��
��
��

��
��
��

a b

=
n2 − 1

n ��
��
��

��
��
��

a b
=

n2 − 1

n
δba . (2.6)
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Chapter Six

Permutations

The simplest example of invariant tensors is the products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the sym-
metric groupSp, the group of permutations ofp objects, enters into the theory of
tensor reps. In this chapter, I introduce birdtracks notation for permutations, sym-
metrizations and antisymmetrizations and collect a few results that will be useful
later on. These are the (anti)symmetrization expansion formulas (6.10) and (6.19),
Levi-Civita tensor relations (6.28) and (6.30), the characteristic equations (6.50),
and the invariance conditions (6.54) and (6.56). The theory of Young tableaux (or
plethysms) is developed in chapter9.

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a [d× d] matrix:

σβ
α = σ

a1a2...aq

b1...bp
,dp...d1

cq...c2c1 . (6.1)

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

identity:1ab,
cd= δdaδ

c
b =

flip: σ(12)ab,
cd= δcaδ

d
b = . (6.2)

For 3-index tensors, there are six permutations:

1a1a2a3
,b3b2b1 =δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 =δb2a1

δb1a2
δb3a3

=

σ(23)= , σ(13) =

σ(123)= , σ(132) = . (6.3)

Subscripts refer to the standard permutation cycles notation. For the remainder of
this chapter we shall mostly omit the arrows on the Kronecker delta lines.
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The symmetric sum of all permutations,

Sa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

+ δb1a2
δb2a1

. . . δbpap
+ . . .

}

S =

...

=
1

p!

{

...

+

...

+

...

+ . . .

}
, (6.4)

yields the symmetrization operatorS. In birdtracknotation, a white bar drawn across
p lines will always denote symmetrization of the lines crossed. A factor of1/p! has
been introduced in order forS to satisfy the projection operator normalization

S2=S

... = ... . (6.5)

A subset of indicesa1, a2, . . . aq, q < p can be symmetrized by symmetrization
matrixS12...q

(S12...q)a1a2...aq...ap
,bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq

+ δb1a2
δb2a1

. . . δbqaq
+ . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q=
...

... ...

2
1

q . (6.6)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q=S

...
......

...

... =

... ...

... ... . (6.7)

Any permutation has eigenvalue1 on the symmetric tensor space:

σS=S

...

=

...

. (6.8)

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition (6.4) of the symmetrization operator as the sum of allp! permuta-

tions is inconvenient for explicit calculations; a recursive definition is more useful:

Sa1a2...ap
,bp...b2b1 =

1

p

{
δb1a1

Sa2...ap
,bp...b2 +δb1a2

Sa1a3...ap
,bp...b2 + . . .

}

S=
1

p

(
1 + σ(21) + σ(321) + . . .+ σ(p...321)

)
S23...p

...

=
1

p

{

...

+

...

+

...

+ . . .

}
, (6.9)
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which involves onlyp terms. This equation says that if we start with the first index,
we end up either with the first index, or the second index and so on. The remaining
indices are fully symmetric. Multiplying byS23 . . . p from the left, we obtain an
even more compact recursion relation with two terms only:

...

=
1

p

(

...

+ (p− 1)

... ... ...

)
. (6.10)

As a simple application, consider computation of a contraction of a single pair of
indices:

p-2
-1p

...

1
=

1

p

{

... + (p− 1) ... ... ...

}

=
n+ p− 1

p ...

Sapap−1...a1
,b1...bp−1ap =

n+ p− 1

p
Sap−1...a1

,b1...bp−1 . (6.11)

For a contraction in(p− k) pairs of indices, we have

p

k

1

... ...
...

...

...

...
...

=
(n+ p− 1)!k!

p!(n+ k − 1)! k

1

... ...

...

. (6.12)

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

dS = trS = ... =
n+ p− 1

p

...

=
(n+ p− 1)!

p!(n− 1)!
. (6.13)

For example, for 2-index symmetric tensors,

dS = n(n+ 1)/2 . (6.14)

6.2 ANTISYMMETRIZATION

The alternating sum of all permutations,

Aa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

− δb1a2
δb2a1

. . . δbpap
+ . . .

}

A =

...

=
1

p!

{

...

−

...

+

...

− . . .

}
, (6.15)
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yields the antisymmetrization projection operatorA. In birdtrack notation, antisym-
metrization ofp lines will always be denoted by a black bar drawn across the lines.
As in the previous section

A2=A

... = ...

...

=

...

(6.16)

and in addition

SA=0
... =0

...

=
...

= 0 . (6.17)

A transposition has eigenvalue−1 on the antisymmetric tensor space

σ(i,i+1)A=−A

...

=−

...

. (6.18)

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of−1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

...

=
1

p

{

...

−

...

+

...

− . . .

}

=
1

p

{

...

− (p− 1)

...... ...

}
. (6.19)

This is useful for computing contractions such as

p
p−2

−1

...

1

...

=
n− p+ 1

p ...

Aaap−1...a1
,b1...bp−1a=

n− p+ 1

p
Aap−1...a1

,b1...bp−1 . (6.20)

The number of independent components of fully antisymmetric tensors is given by

dA=trA = ... =
n− p+ 1

p

n− p+ 2

p− 1
. . .

n

1

=

{ n!
p!(n−p)! , n ≥ p

0 , n < p
. (6.21)
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For example, for 2-index antisymmetric tensors the number of independent compo-
nents is

dA =
n(n− 1)

2
. (6.22)

Tracing(p− k) pairs of indices yields

+1

...

...

k

...

... ...

p

k

1

...

...

=
k!(n− k)!

p!(n− p)! ...
k...

1
...

. (6.23)

The antisymmetrization tensorAa1a2...,
bp...b2b1 has nonvanishing components, only

if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tensorA has no nonvanishing components:

...

1

...

2

p

= 0 if p > n . (6.24)

This identity implies that forp > n, not all combinations ofp Kronecker deltas are
linearly independent. A typical relation is thep = n+ 1 case

0 =

+1n1 ...

...

2

=
...

−
...

+
...

− . . . . (6.25)

For example, forn = 2 we have

n = 2 : 0=

c

f

ba

e d

− − + + − (6.26)

0= δfaδ
e
bδ

d
c − δfaδ

e
cδ

d
b − δfb δ

e
aδ

d
c + δfb δ

e
cδ

d
a + δfc δ

e
aδ

d
b − δfc δ

e
bδ

d
a .
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Chapter Nine

Unitary groups

P. Cvitanović, H. Elvang, and A. D. Kennedy

U(n) is the group of all transformations that leave invariant the normqq = δab q
bqa

of a complex vectorq. ForU(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps ofU(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In sections.9.1–9.2
we show how to do this for 2- and 3-index tensors by constructing the appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection opera-
tors directly from the Young tableaux. In section9.3we review the Young tableaux,
and in section9.4we show how to construct Young projection operators for tensors
with any number of indices. As examples, 3- and 4-index tensors are decomposed
in section9.5. We use the projection operators to evaluate3n-j coefficients and
characters ofU(n) in sections.9.6–9.9, and we derive new sum rules forU(n) 3-j
and 6-j symbols in section9.7. In section9.8we consider the consequences of the
Levi-Civita tensor being an extra invariant forSU(n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In sections.9.10–9.12the mixedSU(n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter3.SU(2),SU(3),SU(4), andSU(n) are discussed from the “invariance group"
perspective in chapter15.

9.1 TWO-INDEX TENSORS

Consider 2-index tensorsq(1) ⊗ q(2) ∈ ⊗V 2. According to (6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip (6.2),

σ = .

The flip satisfies

σ2 = =1 ,

(σ + 1)(σ − 1)=0 . (9.1)
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The eigenvalues areλ1 = 1, λ2 = −1, and the corresponding projection operators
(3.48) are

P1=
σ − (−1)1

1− (−1)
=

1

2
(1+ σ) =

1

2

{
+

}
, (9.2)

P2=
σ − 1

−1− 1
=

1

2
(1− σ) =

1

2

{
−

}
. (9.3)

We recognize the symmetrization, antisymmetrization operators (6.4), (6.15);P1 =
S,P2 = A, with subspace dimensionsd1 = n(n+1)/2, d2 = n(n−1)/2. In other
words, under general linear transformations the symmetric and the antisymmetric
parts of a tensorxab transform separately:

x=Sx+Ax ,

xab=
1

2
(xab + xba) +

1

2
(xab − xba)

= + . (9.4)

The Dynkin indices for the two reps follow by (7.29) from 6j′s:

=
1

2
(0) +

1

2
=

N

2

ℓ1=
2ℓ

n
· d1 +

2ℓ

N
· N
2

= ℓ(n+ 2) . (9.5)

Substituting the defining rep Dynkin indexℓ−1 = CA = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices

ℓ1 =
n+ 2

2n
, ℓ2 =

n− 2

2n
. (9.6)

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric. The
results of this section are summarized in figure9.1and table9.1. We mix the third
index into the symmetric 2-index subspace using the invariant matrix

Q = S12σ(23)S12 =

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

. (9.7)

Here projection operatorsS12 ensure the restriction to the 2-index symmetric sub-
space, and the transpositionσ(23) mixes in the third index. To find the characteristic
equation forQ, we computeQ2:

Q2=S12σ(23)S12σ(23)S12 =
1

2

{
S12 + S12σ(23)S12

}
=

1

2
S12 +

1

2
Q

= =
1

2

{
+

}
.
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Hence,Q satisfies

(Q− 1)(Q+ 1/2)S12 = 0 , (9.8)

and the corresponding projection operators (3.48) are

P1 =
Q+ 1

21

1 + 1
2

S12=
1

3

{
σ(23) + σ(123) + 1

}
S12 = S

=
1

3

{
+ +

}
= (9.9)

P2 =
Q− 1

− 1
2 − 1

S12=
4

3
S12A23S12 =

4

3
. (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspace (6.13) and a mixed symmetry subspace with dimensions

d1=trP1 = n(n+ 1)(n+ 2)/3! (9.11)

d2=trP2 =
4

3
= n(n2 − 1)/3 . (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the
invariant matrix

Q = A12σ(23)A12 = . (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in figure9.1. Symmetries of the subspace are indicated by
the corresponding Young tableaux, table9.2. For example, we have just constructed

21 ⊗ 3 = 1 32 ⊕ 2
3
1

= +
4

3

n2(n+ 1)

2
=

n(n+ 1)(n+ 2)

3!
+

n(n2 − 1)

3
. (9.14)

The projection operators for tensors with up to 4 indices are shown in figure9.1,
and in figure9.2the corresponding stepwise reduction of the irreps is given in terms
of Young standard tableaux (defined in section9.3.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sections.9.1–9.2that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations. For
tensors with more than three indices this method is cumbersome, and it is much
simpler to construct the projection operators directly from the Young tableaux. In
this section we review the Young tableaux and some aspects of symmetric group
representations that will be important for our construction of the projection operators
in section9.4.
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!n
!4 (n−4 !)

(n2 )1− n(n 2)
8

−

(n2 )1−n2

12

(n2 )1− n(n+2)
8

3
2

1−

2

3
2

4

2

3
2

3
4

3
4

3

n(n+1)
2

n(n
2

)1−

3!
n+2n(

n

)(n+1 )

n(n2 )1−
3

( )n 1−n (n 2)
3!

−

dimension

3
4

3
2

(n+3 !)
!4 !( )n

AAS

S

S A

A

SSSA A

S

SA

A

S A

Figure 9.1 Projection operators for 2-, 3-, and 4-index tensors inU(n), SU(n), n ≥ p =
number of indices.
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n(n+1)
2

n(n
2

)1−

3!
n+2n( )(n+1 )

n(n2 )1−
3

( )n 1−n (n 2)
3!

−

3

1 3
4

3 2

1
2

31 2

31 4 1 32 2
2

2
2

4

21

1
2

3

2 1 3 41
2 2

1 2

1 3

!n
!4 (n−4 !)

(n2 )1− n(n+2)
8

(n2 )1−n2

12

(n2 )1−

2

n(n 2)
8

−

(n+3 !)
!4 !( )n 1−

3

1

1 2

3

4

4
1
3

4

1
3 4

1

4
3

4

n1

S A SSA AS SA

A

S

S
A

S

S

A

A

A

Figure 9.2 Young tableaux for the irreps of the symmetric group for 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columns to antisymmetrizations.
The reduction procedure is not unique, as it depends on the order in which the
indices are combined; this order is indicated by labels 1, 2, 3 , ...,p in the boxes
of Young tableaux.
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9.3.1 Definitions

Partitionk identical boxes intoD subsets, and letλm, m = 1, 2, . . . , D, be the
number of boxes in the subsets ordered so thatλ1 ≥ λ2 ≥ . . . ≥ λD ≥ 1. Then
the partitionλ = [λ1, λ2, . . . , λD] fulfills

∑D
m=1 λm = k. The diagram obtained

by drawing theD rows of boxes on top of each other, left aligned, starting withλ1

at the top, is called aYoung diagramY .

Examples:
The ordered partitions fork = 4 are [4], [3, 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1]. The
corresponding Young diagrams are

.

Inserting a number from the set{1, . . . , n} into every box of a Young diagram
Yλ in such a way that numbers increase when reading a column from top to bottom,
and numbers do not decrease when reading a row from left to right, yields aYoung
tableauYa. The subscripta labels different tableaux derived from a given Young
diagram,i.e., different admissible ways of inserting the numbers into the boxes.

A standard tableauis ak-box Young tableau constructed by inserting the numbers
1, . . . , k according to the above rules, but using each number exactly once. For
example, the 4-box Young diagram with partitionλ = [2, 1, 1] yields three distinct
standard tableaux:

1

4

2
3 ,

1
2
4

3
,

1

3

4
2 . (9.15)

An alternative labeling of a Young diagram are Dynkin labels, the list of num-
bers bm of columns withm boxes:(b1b2 . . .). Having k boxes we must have∑k

m=1 mbm = k. For example, the partition[4, 2, 1] and the labels(21100 · · ·)
give rise to the same Young diagram, and so do the partition[2, 2] and the labels
(020 · · ·).

We define thetransposediagramYt as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpose of[3, 1] is [2, 1, 1],

1 42
3

t

=
1
2
4

3
,

or, in terms of Dynkin labels, the transpose of(210 . . .) is (1010 . . .).
The Young tableaux are useful for labeling irreps of various groups. We shall use

the following facts (see for instance ref. [153]):

1. Thek-boxYoung diagramslabel all irreps of the symmetric groupSk.

2. Thestandard tableauxof k-box Young diagrams with no more thann rows
label the irreps ofGL(n), in particular they label the irreps ofU(n).
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3. Thestandard tableauxof k-box Young diagrams with no more thann − 1
rows label the irreps ofSL(n), in particular they label the irreps ofSU(n).

In this section, we consider the Young tableaux for reps ofSk andU(n), while the
case ofSU(n) is postponed to section9.8.

9.3.2 Symmetric groupSk

The irreps of the symmetric groupSk are labeled by thek-box Young diagrams. For
a given Young diagram, the basis vectors of the corresponding irrep can be labeled
by the standard tableaux of Y; consequently the dimension∆Y of the irrep is the
number of standard tableaux that can be constructed from the Young diagram Y.
The example (9.15) shows that the irrepλ = [2, 1, 1] of S4 is 3-dimensional.

As an alternative to counting standard tableaux, the dimension∆Y of the irrep of
Sk corresponding to the Young diagram Y can be computed easily as

∆Y =
k!

|Y| , (9.16)

where the number|Y| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right of the box, including the
box itself. Then|Y| is the product of the numbers in all the boxes. For instance,

Y = −→ |Y| =
6 15 3

34
2 1

1 = 6! 3 . (9.17)

The hook rule (9.16) was first proven by Frame, de B. Robinson, and Thrall [123].
Various proofs can be found in the literature [296, 170, 133, 142, 21]; see also Sagan
[303] and references therein.

We now discuss the regular representation of the symmetric group. The elements
σ ∈ Sk of the symmetric groupSk form a basis of ak!-dimensional vector spaceV
of elements

s =
∑

σ∈Sk

sσ σ ∈ V , (9.18)

wheresσ are the components of a vectors in thegivenbasis. Ifs ∈ V has components
(sσ) andτ ∈ Sk, thenτs is an element inV with components(τs)σ = sτ−1σ. This
action of the group elements on the vector spaceV defines ank!-dimensional matrix
representation of the groupSk, theregular representation.

The regular representation is reducible, and each irrepλ appears∆λ times in the
reduction;∆λ is the dimension of the subspaceVλ corresponding to the irrepλ. This
gives the well-known relation between the order of the symmetric group|Sk| = k!
(the dimension of the regular representation) and the dimensions of the irreps,

|Sk| =
∑

all irreps λ

∆2
λ .

Using (9.16) and the fact that the Young diagrams label the irreps ofSk, we have

1 = k!
∑

(k)

1

|Y |2 , (9.19)
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where the sum is over all Young diagrams withk boxes. We shall use this relation
to determine the normalization of Young projection operators in appendixB.3.

The reduction of the regular representation ofSk gives a completeness relation,

1 =
∑

(k)

PY ,

in terms of projection operators

PY =
∑

Ya∈Y

PYa
.

The sum is over all standard tableaux derived from the Young diagram Y. EachPYa

projects onto a corresponding invariant subspaceVYa
: for each Y there are∆Y such

projection operators (corresponding to the∆Y possible standard tableaux of the
diagram), and each of these project onto one of the∆Y invariant subspacesVY of
the reduction of the regular representation. It follows that the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary groupU(n)

The irreps ofU(n) are labeled by thek-box Young standard tableaux with no more
thann rows. A k-index tensor is represented by a Young diagram withk boxes
— one typically thinks of this as ak-particle state. ForU(n), a 1-index tensor has
n-components, so there aren 1-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagram. There aren2

2-particle states forU(n), and as we have seen in section9.1 these split into two
irreps: the symmetric and the antisymmetric. Using Young diagrams, we write the
reduction of the 2-particle system as

⊗ = ⊕ . (9.20)

Except for the fully symmetric and the fully antisymmetric irreps, the irreps of the
k-index tensors ofU(n)have mixed symmetry. Boxes in a row correspond to indices
that are symmetric under interchanges (symmetric multiparticle states), and boxes
in a column correspond to indices antisymmetric under interchanges (antisymmetric
multiparticle states). Since there are onlyn labels for the particles, no more than
n particles can be antisymmetrized, and hence only standard tableaux with up ton
rows correspond to irreps ofU(n).

The number of standard tableaux∆Y derived from a Young diagram Y is given in
(9.16). In terms of irreducible tensors, the Young diagram determines the symmetries
of the indices, and the∆Y distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. This is illustrated in fig-
ure9.2.

For a givenU(n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tableauxYa obtained by inserting
the numbers1, 2, . . . , n into Y in the manner described in section9.3.1. Thus the
dimension of an irrep ofU(n) equals the number of such Young tableaux, and we



GroupTheory version 9.0.1, April 8, 2011

92 CHAPTER 9

note that all irreps with the same Young diagram have the same dimension. For
U(2), thek = 2 Young tableaux of the symmetric and antisymmetric irreps are

11 , 21 , 22 , and 1
2
,

so the symmetric state ofU(2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formulas (6.4) and (6.15) for the dimensions of
the symmetry operators. ForU(3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle irrep
is 3-dimensional, again in agreement with (6.4) and (6.15). In section9.4.3we state
and prove a dimension formula for a general irrep ofU(n).
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Ya PYa
dYa

1 32
n(n+1)(n+2)

6

2
3
1

1
2

3

4
3

4
3





n(n2−1)
3

1
2
3

(n−2)(n−1)n
6

1 ⊗ 2 ⊗ 3 n3

Table 9.1 Reduction of 3-index tensor. The last row shows the direct sum of the Young
tableaux, the sum of the dimensions of the irreps adding up ton3, and the sum of
the projection operators adding up to the identity as verification of completeness
(3.51).

of direct products stated below, in section9.5.1. We have already treated the decom-
position of the 2-index tensor into the symmetric and the antisymmetric tensors, but
we shall reconsider the 3-index tensor, since the projection operators are different
from those derived from the characteristic equations in section9.2.

The 3-index tensor reduces to

1 ⊗ 2 ⊗ 3 =

(
21 ⊕ 1

2

)
⊗ 3

= 1 32 ⊕ 2
3
1 ⊕ 1

2
3 ⊕

1
2
3
. (9.32)

The corresponding dimensions and Young projection operators are given in table9.1.
For simplicity, we neglect the arrows on the lines where this leads to no confusion.

The Young projection operators are orthogonal by inspection.We check complete-
ness by a computation. In the sum of the fully symmetric and the fully antisymmetric
tensors, all the odd permutations cancel, and we are left with

+ =
1

3

{
+ +

}
.

Expanding the two tensors of mixed symmetry, we obtain

4

3

{
+

}
=

2

3
− 1

3
− 1

3
.
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Chapter Ten

Orthogonal groups

Orthogonal groupSO(n) is the group of transformations that leaves invariant a
symmetric quadratic form(q, q) = gµνq

µqν :

gµν = gνµ = µ ν µ, ν = 1, 2, . . . , n . (10.1)

If (q, q) is an invariant, so is its complex conjugate(q, q)∗ = gµνqµqν , and

gµν = gνµ = µ ν (10.2)

is also an invariant tensor. The matrixAν
µ = gµσg

σν must be proportional to unity, as
otherwise its characteristic equation would decompose thedefiningn-dimensional
rep. A convenient normalization is

gµσg
σν =δνµ

= . (10.3)

As the indices can be raised and lowered at will, nothing is gained by keeping the
arrows. Our convention will be to perform all contractions with metric tensors with
upper indices and omit the arrows and the open dots:

gµν ≡ µ ν . (10.4)

All other tensors will have lower indices. For example, Lie group generators(Ti)µ
ν

from (4.31) will be replaced by

(Ti)µ
ν = → (Ti)µν = .

The invariance condition (4.36) for the metric tensor

+ =0

(Ti)µ
σgσν + (Ti)ν

σgµσ=0 (10.5)

becomes, in this convention, a statement that theSO(n) generators are antisymmet-
ric:

+ = 0

(Ti)µν =− (Ti)νµ . (10.6)

Our analysis of the reps ofSO(n) will depend only on the existence of a sym-
metric metric tensor and its invertability, and not on its eigenvalues. The resulting
Clebsch-Gordan series applies both to the compactSO(n) and noncompact orthog-
onal groups, such as the Minkowski groupSO(1, 3). In this chapter, we outline the
construction ofSO(n) tensor reps. Spinor reps will be taken up in chapter11.
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10.1 TWO-INDEX TENSORS

In section9.1we have decomposed theSU(n) 2-index tensors into symmetric and
antisymmetric parts. ForSO(n), the rule is to lower all indices on all tensors, and
the symmetric state projection operator (9.2) is replaced by

Sµν,ρσ =gρρ′gσσ′Sµν ,
ρ′σ′

=
1

2
(gµσgνρ + gµρgνσ)

λ1
µ

ν

σ

ρ
= .

From now on, we drop all arrows andgµν ’s and write (9.4) as

= +

gµσgνρ=
1

2
(gµσgνρ + gµρgνσ) +

1

2
(gµσgνρ − gµρgνσ) . (10.7)

The new invariant, specific toSO(n), is the index contraction:

Tµν,ρσ = gµνgρσ , T = . (10.8)

The characteristic equation for the trace invariant

T2 = = nT (10.9)

yields the trace and the traceless part projection operators (9.53), (9.54). As T is
symmetric,ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition ofSO(n) 2-index tensors is
traceless symmetric:

(P2)µν,ρσ =
1

2
(gµσgνρ + gµρgνσ)−

1

n
gµνgρσ = − 1

n
,

(10.10)

singlet: (P1)µν,ρσ =
1

n
gµνgρσ =

1

n
, (10.11)

antisymmetric:(P3)µν,ρσ =
1

2
(gµσgνρ − gµρgνσ) = . (10.12)

The adjoint rep (9.57) of SU(n) is decomposed into the traceless symmetric and
the antisymmetric parts. To determine which of them is the new adjoint rep, we sub-
stitute them into the invariance condition (10.5). Only the antisymmetric projection
operator satisfies the invariance condition

+ = 0 ,

so the adjoint rep projection operator forSO(n) is

1

a
= . (10.13)



GroupTheory version 9.0.1, April 8, 2011

ORTHOGONAL GROUPS 123

Young tableaux × = • + +

Dynkin labels (10 . . .)× (10 . . .) = (00 . . .) + (010 . . .) + (20 . . .)

Dimensions n2 = 1 + n(n−1)
2

+ (n+2)(n−1)
2

Dynkin indices 2n 1
n−2

= 0 + 1 + n+2
n−2

Projectors = 1
n

+
���
���
���
���
���
���

���
���
���
���
���
���

+

{

− 1
n

}

Table 10.1SO(n) Clebsch-Gordan series forV ⊗V .

The dimension ofSO(n) is given by the trace of the adjoint projection operator:

N = trPA = =
n(n− 1)

2
. (10.14)

Dimensions of the other reps and the Dynkin indices (see section 7.5) are listed in 
table 10.1.
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Adding the two equations we get

+
4

3
+

4

3
+ = ,(9.33)

verifying the completeness relation.
For 4-index tensors the decomposition is performed as in the 3-index case, result-

ing in table9.2.
Acting with any permutation on the fully symmetric or antisymmetric projection

operators gives±1 times the projection operator (see (6.8) and (6.18)). For projection
operators of mixed symmetry the action of a permutation is not as simple, because
the permutations will mix the spaces corresponding to the distinct tableaux. Here
we shall need only the action of a permutation within a 3n-j symbol, and, as we
shall show below, in this case the result will again be simple, a factor±1 or 0.
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Chapter Twenty

E7 family and its negative-dimensional cousins

Parisi and Sourlas [270] have suggested that a Grassmann vector space of dimension
n can be interpreted as an ordinary vector space of dimension−n. As we have seen in
chapter13, semisimple Lie groups abound with examples in which ann → −n sub-
stitution can be interpreted in this way. An early example was Penrose’s binors [281],
reps ofSU(2) = Sp(2) constructed asSO(−2), and discussed here in chapter14.
This is a special case of a general relation betweenSO(n) andSp(−n) established
in chapter13; if symmetrizations and antisymmetrizations are interchanged, reps
of SO(n) becomeSp(−n) reps. Here we work out in detail a 1977 example of a
negative-dimensions relation [74], subsequently made even more intriguing [78] by
Cremmer and Julia’s discovery of a globalE7 symmetry in supergravity [68].

We extend the Minkowski space into Grassmann dimensions by requiring that
the invariant length and volume that characterize the Lorentz group (SO(3, 1) or
SO(4) — compactness plays no role in this analysis) become a quadratic and a
quartic supersymmetric invariant. The symmetry group of the Grassmann sector
will turn out to be one ofSO(2),SU(2),SU(2)×SU(2)×SU(2),Sp(6),SU(6),
SO(12), orE7, which also happens to be the list of possible global symmetries of
extended supergravities.

As shown in chapter10,SO(4) is the invariance group of the Kronecker deltagµν
and the Levi-Civita tensorεµνσρ; hence, we are looking for the invariance group of
the supersymmetric invariants

(x, y)=gµνx
µyν ,

(x, y, z, w)=eµνσρx
µyνzσwρ , (20.1)
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− µ 
in a Grassmann (or fermionic) world each trace carries a minus sign. For the quadratic
invariant gµν alone, the invariance group is the orthosymplectic OSp(4, n). This 
group [177] is orthogonal in the bosonic dimensions and symplectic in the Grass-
mann dimensions, because if gµν is symmetric in the ν, µ > 0 indices, it must be 
antisymmetric in the ν, µ < 0 indices. In this way the supersymmetry ties in with
the SO(n) ∼ Sp(−n) equivalence developed in chapter 13.

Following this line of reasoning, a quartic invariant tensor eµνσρ, antisymmetric in 
ordinary dimensions, is symmetric in the Grassmann dimensions. Our task is then
to determine all groups that admit an antisymmetric quadratic invariant, together
with a symmetric quartic invariant. 
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20.3.1 SO(4) or A1 + A1 algebra

The first solution, d = 4, is not a surprise; it was SO(4), Minkowski or euclidean 
version, that motivated the whole project. The quartic invariant is the Levi-Civita 
tensor εµνρσ. Even so, the projectors constructed are interesting. Taking

Qµ
ν
δ
ρ = gµεgδρεεσνγ , (20.25)

one can immediately calculate (20.6):

Q2 = 4P3 . (20.26)

The projectors (20.14) become

PA =
1

2
P3 +

1

4
Q, P7 =

1

2
P3 −

1

4
Q , (20.27)

and the dimensions areN = d7 = 3. Also bothPA andP7 satisfy the invariance
condition, the adjoint rep splits into two invariant subspaces. In this way, one shows
that the Lie algebra ofSO(4) is the semisimpleSU(2) + SU(2) = A1 + A1.
Furthermore, the projection operators are precisely theη, η symbols used by ’t Hooft
[164] to map the self-dual and self-antidualSO(4) antisymmetric tensors onto
SU(2) gauge group:

(PA)
µδ
νρ=

1

4

(
δµρ δ

δ
ν − gµδgνρ + εµδνρ

)
= −1

4
ηa

µ
ν ηa

δ
ρ ,

(P7)
µδ
νρ=

1

4

(
δµρ δ

δ
ν − gµδgνρ − εµδνρ

)
= −1

4
ηa

µ
ν ηa

δ
ρ . (20.28)

µ
νThe only difference is that instead of using an index pair , ’t Hooft indexes the 

adjoint spaces by a = 1, 2, 3. All identities, listed in the appendix of ref. [164], now 
follow from the relations of section 20.1.
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