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A PREVIEW 9

Once the projection operators are known, all interesting spectroscopic numbers can
be evaluated.

The foregoing run through the basic concepts was inevitably obscure. Perhaps
working through the next two examples will make things clearer. The first example
illustrates computations with classical groups. The second example is more inter-
esting; it is a sketch of construction of irreducible repgigf

2.2 FIRST EXAMPLE: SU(n)

How do we describe the invariance group that preserves the norm of a complex
vector? Thdist of primitivesconsists of a single primitive invariant,

n

m(p,q) = 0§p"¢a = Y (Pa)"a -

a=1
The Kroneckepy is the only primitive invariant tensor. We can immediately write
down the twainvariant matriceson the tensor product of the defining space and its
conjugate,
d—e—cC
identity : 159 = 0,05 =
' a—>—b

d c
trace : T9¢ = 635 = ) C .
i a b

The characteristic equatiorfior 7" written out in the matrix, tensor, and birdtrack
notations is
T?=nT
T3 1T =065618565 = nTgs

2= C

Here we have usedf = n, the dimension of the defining vector space. The roots
are\; = 0, A2 = n, and the correspondirgojection operatorgire

SU (n) adjoint rep: P, = IT=l_1-_17
———
= _1
> - -i>C 5
U(n) singlet: P, = T01_1p_ %} C

Now we can evaluate any number associated withSttién) adjoint rep, such as
its dimension and various casimirs.

Thedimension®f the two reps are computed by tracing the corresponding pro-
jection operators (see secti6rb):

_ _ _Q_l _ba_lba
SU(n) adjoint: d; =tr Py = @ = O n@ = 4,08 n5a6b

=n?-1

. 1
singlet: do =tr Py = —8 =
n
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To evaluatecasimirs we need to fix the overall normalization of the generafgrs
of SU(n). Our convention is to take

5ij :tI‘ETj :407 .

The value of the quadratic casimir for the defining rep is computed by substituting
the adjoint projection operator:

SU(n): Cpd’ = (TiTi)g:;Q_ = _@_ L
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Chapter Six

Permutations

The simplest example of invariant tensors is the products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the sym-
metric groupsS,, the group of permutations g@fobjects, enters into the theory of
tensor reps. In this chapter, | introduce birdtracks notation for permutations, sym-
metrizations and antisymmetrizations and collect a few results that will be useful
later on. These are the (anti)symmetrization expansion formélaé @and 6.19,
Levi-Civita tensor relations5(28 and 6.30, the characteristic equation8.$0),

and the invariance condition§ (64 and 6.56). The theory of Young tableaux (or
plethysms) is developed in chapfer

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a[d x d] matrix:
0o = Ob e eger - (6.1)

7Cq...C2C1

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

. . ——
identity: 1,5, = 6965 =

——
flip: o (12)0, " = 0505 = > . (6.2)

For 3-index tensors, there are six permutations:

bsbab b1 b2 £b
3bab1 _ §b1 b2 §b3 ¢
1111112113’ _5a15a26a3 -
—_—
b3baby _ sbo by sbz ><
0(12)a1a2a3a _50,15(126(13 -

———
0(23) T N O013) = ><

0(123):527 0(132) — % (6.3)

Subscripts refer to the standard permutation cycles notation. For the remainder of
this chapter we shall mostly omit the arrows on the Kronecker delta lines.
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The symmetric sum of all permutations,

ai -az2 az-ai

5 = %E:%{—+><+%+} (6.)

yields the symmetrization operat®rin birdtrack notation, a white bar drawn across
p lines will always denote symmetrization of the lines crossed. A factoy pfhas
been introduced in order fdf to satisfy the projection operator normalization

EE-TE

A subset of indices, as, ... aq, ¢ < p can be symmetrized by symmetrization
matrix Si2.. 4

1
Suran..a, o b2l = {5b1 gb2 ”.521; 1 gbigbe “.521; T }

bp...bg...bab
(812...q)a1a2...aq...ap7 proPa P2l =

1
- {5b15b2 o 80 g gt g 4 ---}53?,11---5’7?

ai a2
q!

1
- 2
512...q=§Eq. (6.6)

Overall symmetrization also symmetrizes any subset of indices:

SS12..4=5

(6.7)

Any permutation has eigenvaliieon the symmetric tensor space:

cS=S58

EE

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition 6.4) of the symmetrization operator as the sum opafpermuta-
tions is inconvenient for explicit calculations; a recursive definition is more useful:

1
bp...bab b bp...b b bp...b
Sauzz...apa PRl = — {5,& Saz...apa P2 +5a;Sa1a3...apv Pt 4L }

S:

%E_

(1+0@1) +0@Ea1) + -+ 0(p...321)) S23..p

(FEZEXE ) e

R"V= "B
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which involves onlyp terms. This equation says that if we start with the first index,
we end up either with the first index, or the second index and so on. The remaining
indices are fully symmetric. Multiplying bysss . .. p from the left, we obtain an
even more compact recursion relation with two terms only:

%E = % <ﬂE +(p— 1)%) : (6.10)

As a simple application, consider computation of a contraction of a single pair of

indices:
vy
1 p -

n+p—1
Sapap—l ..ay ablmbpilap - TS“PH ..a1 7b1...bp,1 . (6.11)

For a contraction ifp — k) pairs of indices, we have

_ (ntp— ! . (6.12)

pl(n+k—1)! kj:[
i :

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

dstrS@ ””’1@ "+p1 . (6.13)
(=

For example, for 2-index symmetric tensors,

ds =n(n+1)/2. (6.14)

6.2 ANTISYMMETRIZATION

The alternating sum of all permutations,

1
Auran.a Lrebats == {5b15b2 R X RO L }

ay-a2 az-ai

_><+%_} (6.15)
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yields the antisymmetrization projection operatioin birdtrack notation, antisym-
metrization ofp lines will always be denoted by a black bar drawn across the lines.
As in the previous section

A’=A
=+
and in addition
SA=0

i

A transposition has eigenvaluel on the antisymmetric tensor space

3

(i 1+1)A_

s =

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of—1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

= SHE S S o
:%{EE_@_”ﬁ}' 6.19)

This is useful for computing contractions such as

o i _n— p—|—1
2 T
1

n— p—|—1
aap 1. 1a bp—ra — D ap 1- 17 b . (620)

The number of independent components of fully antisymmetric tensors is given by

da—tr A — _n—p+ln—p+2 n
A= = = D pfl 7

:nilu nzp
— (n—p)! ) (6.21)
0, n<p
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For example, for 2-index antisymmetric tensors the number of independent compo-
nents is

n(n—1) .
2

da = (6.22)

Tracing(p — k) pairs of indices yields

(6.23)

The antisymmetrization tensdr,, .. ,’»*?2%* has nonvanishing components, only
if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tenddras no nonvanishing components:

1
?EE =0 ifp>n. (6.24)
p

This identity implies that fop > n, not all combinations gf Kronecker deltas are
linearly independent. A typical relation is the= n + 1 case

0= H = H - LH +u H - (6.25)
For example, fon = 2 we have
XXX X o

0=0/056e — §16c68 — 6] 6c6¢ + 51 6¢6e + 61 oca — 615567 .

bYa"c bYcYa

f e d

n=2: 0=
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Chapter Nine

Unitary groups

P. Cvitanovic, H. Elvang, and A. D. Kennedy

U(n) is the group of all transformations that leave invariant the ngyr 5¢¢%q,

of a complex vectoy. ForU(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps of/(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In se&ibk2

we show how to do this for 2- and 3-index tensors by constrgdtie appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection opera-
tors directly from the Young tableaux. In secti®r3we review the Young tableaux,
and in sectiorB.4we show how to construct Young projection operators for tenso
with any number of indices. As examples, 3- and 4-index tensors are decomposed
in section9.5. We use the projection operators to evaluate; coefficients and
characters o/ (n) in sections9.6-9.9, and we derive new sum rules foi(n) 3-j
and 64 symbols in sectio.7. In section9.8we consider the consequences of the
Levi-Civita tensor being an extra invariant 8¢/ (n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In secti®ri3-9.12the mixedSU (n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter3.SU(2), SU(3), SU(4), andSU (n) are discussed from the “invariance group"
perspective in chaptdrs.

9.1 TWO-INDEX TENSORS

Consider 2-index tensorg!) ® ¢? € ®V?2. According to 6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip §.2),

The flip satisfies

(c+1)(c—1)=0. (9.1)
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The eigenvalues arg, = 1, Ay = —1, and the corresponding projection operators
(3.49 are
o—(-D1 1

71_(_1):§<1+a>=§{_‘_+><}7 9.2)
1:'2:_”1__11 _%(1_0)_%{ —><} 9.3)

We recognize the symmetrization, antisymmetrization operaiofs (6.19; P, =

S, P, = A, with subspace dimensiods = n(n+1)/2,ds = n(n—1)/2.In other
words, under general linear transformations the symmetric and the antisymmetric
parts of a tensar,;, transform separately:

r=Sx+ Ax,

P,=

1 1
Tap =73 (%b + xba) + = (xab xba)

—or

The Dynkin indices for the two reps follow by 29 from 6;’s:

)

h= n L N 2
=l(n+2). (9.5)
Substituting the defining rep Dynkin indéx! = C4 = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices
n+2 n—2

él 2n ) 2 2n ( )

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric. The
results of this section are summarized in figlréand tabled.1. We mix the third

index into the symmetric 2-index subspace using the invariant matrix

Q = S120(23)S12 = % lt(_ : (9.7)

Here projection operatof,, ensure the restriction to the 2-index symmetric sub-
space, and the transpositiefy;) mixes in the third index. To find the characteristic
equation forQ, we computeQ?:

1 1 1
Q® =S120(23)S120(23)S12 = 3 {S12 + S120(23)S12} = 5512 + EQ

it e |
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Hence,Q satisfies

(Q-1)(Q+1/2)S12=0, (9.8)
and the corresponding projection operat@g are
Q+11
P, = fsm {0(23) + 0323 +1}S12=8

i< > =275 Jkes
P, = ?_ — 1812—§S12A23812 = gE (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspacé (L3 and a mixed symmetry subspace with dimensions

di=trPy = n(n+1)(n+2)/3! (9.11)
4 2
dy=trPy = 3 =n(n°—-1)/3. (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the

invariant matrix
Q= A120023)A12 = % : (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in figuBel Symmetries of the subspace are indicated by
the corresponding Young tableaux, tabl& For example, we have just constructed

[1[2)eE=[1[23 e L2
4

I = JF+3
1 1) 2 -1
(n2+ ) n+3'(n—|— ) nn3 ) (9.14)
The projection operators for tensors with up to 4 indices are shown in figlire

and in figure9.2the corresponding stepwise reduction of the irreps is givéerims
of Young standard tableaux (defined in sect®®.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sectién$-9.2that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations. For
tensors with more than three indices this method is cumbersome, and it is much
simpler to construct the projection operators directly from the Young tableaux. In
this section we review the Young tableaux and some aspects of symmetric group
representations that will be important for our construction of the projection operators
in section9.4.



GroupTheory  version 9.0.1, April 8, 2011

dimension

—— n

T . 2
2
S/ \ I ngnz—l}
A / \ n(n+1)(n+2)
S 3l

A
n(n®>-1)
\ e

[

n(n-1)(n-2)
3!

o
I\

S S SA A

(n+3)!
41(n-D!

I

=i
==

n?(n*-1)
12

O
% ﬁi (=12
+ -

(n- 4)I

Figure 9.1 Projection operators for 2-, 3-, and 4-index tensoté(im), SU(n), n > p =
number of indices.
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n
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‘/ A n(n+1)
S =
/ n(n-1)
/S 2
A / n(n+1)(n+2)
S \ 3!
/A
n(n*-1)
3
n(n-1)(n-2)
3!
ls A S SA A S SA A S A
(n+3)!
12[3]4) \ ] TGEN]
[1[2[4] [1]3[4] (PP=1)n(n+2)
8
\ \
n*(n”-1)
12
w} \J
1]2] 14
3 44 nne-2)
4 8
n!
H(n-4)!

Figure 9.2 Young tableaux for the irreps of the symmetric group for 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columns to antisymmetrizations.
The reduction procedure is not unique, as it depends on the order in which the
indices are combined; this order is indicated by labels 1, 2, 3p,in.the boxes

of Young tableaux.
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9.3.1 Definitions

Partition & identical boxes intaD subsets, and leX,,,, m = 1,2,...,D, be the
number of boxes in the subsets ordered so that Ao > ... > Ap > 1. Then
the partition\ = [A1, Ao, ..., Ap] fulfills 22:1 Am = k. The diagram obtained
by drawing theD rows of boxes on top of each other, left aligned, starting with
at the top, is called &oung diagrant”.

Examples:
The ordered partitions fok = 4 are[4], [3,1],2,2],[2,1,1] and[1,1,1,1]. The
corresponding Young diagrams are

RN ] -+

Inserting a number from the sét, ..., n} into every box of a Young diagram
Y, in such a way that numbers increase when reading a column from top to bottom,
and numbers do not decrease when reading a row from left to right, yi&dsrey
tableauY,. The subscript labels different tableaux derived from a given Young
diagram,.e., different admissible ways of inserting the numbers into the boxes.

A standard tableais ak-box Young tableau constructed by inserting the numbers
1,...,k according to the above rules, but using each number exactly once. For
example, the 4-box Young diagram with partitian= 2, 1, 1] yields three distinct
standard tableaux:

2|

)

3

)

4]

(9.15)

N
NN
[w]po]=

An alternative labeling of a Young diagram are Dynkin labels, the list of num-
bersb,, of columns withm boxes: (b1bs...). Having k boxes we must have
anzl mb,, = k. For example, the patrtitiofit, 2, 1] and the labelg21100- - )
give rise to the same Young diagram, and so do the partificdt] and the labels
(020---).

We define théransposediagramY! as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpd8edfis [2, 1, 1],

t 1,3

or, in terms of Dynkin labels, the transpose(®10. . .) is (1010.. .).
The Young tableaux are useful for labeling irreps of various groups. We shall use
the following facts (see for instance ref.4):

[w]F

1. Thek-boxYoung diagramsabel all irreps of the symmetric grou). .

2. Thestandard tableauxf k-box Young diagrams with no more thanrows
label the irreps of7 L(n), in particular they label the irreps 6f(n).
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3. Thestandard tableawof k-box Young diagrams with no more than— 1
rows label the irreps af L(n), in particular they label the irreps 6fU (n).

In this section, we consider the Young tableaux for repS;0andU (n), while the
case ofSU(n) is postponed to sectich8.

9.3.2 Symmetric groupSy

The irreps of the symmetric groufy. are labeled by th&-box Young diagrams. For
a given Young diagram, the basis vectors of the corresponding irrep can be labeled
by the standard tableaux of Y; consequently the dimendigrof the irrep is the
number of standard tableaux that can be constructed from the Young diagram Y.
The exampleq.15 shows that the irrep = [2, 1, 1] of Sy is 3-dimensional.

As an alternative to counting standard tableaux, the dimersioof the irrep of
S corresponding to the Young diagram Y can be computed easily as
k!
M
where the numbdfY| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right of the box, including the
box itself. ThenY| is the product of the numbers in all the boxes. For instance,
| 6/5[3[1]
Y = — |Y[=[4]3[1] =6!3. (9.17)
2|1
The hook rule 9.16 was first proven by Frame, de B. Robinson, and Thriail].
Various proofs can be found in the literatur@§, 170, 133 142, 21]; see also Sagan
[309 and references therein.

We now discuss the regular representation of the symmetric group. The elements
o € S of the symmetric group), form a basis of &!-dimensional vector spadé
of elements

Ay = (9.16)

s= Y s,0€V, (9.18)
€Sk

wheres,, are the components of a vectan the given basis. I§ € V' hascomponents
(ss) andr € Sy, thenrs is an element iV with component$rs), = s,-1,. This
action of the group elements on the vector sgacefines ark!-dimensional matrix
representation of the groufy,, theregular representation

The regular representation is reducible, and each krappears\ , times in the
reductionA is the dimension of the subspakecorresponding to the irrefa This
gives the well-known relation between the order of the symmetric gSiup= k!
(the dimension of the regular representation) and the dimensions of the irreps,

|Sk| = Z A3

all irreps A

Using 0.16 and the fact that the Young diagrams label the irrepS;9fve have

1
1 :k!ZW, (9.19)
(k)
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where the sum is over all Young diagrams witthoxes. We shall use this relation
to determine the normalization of Young projection operators in appéhaix
The reduction of the regular representatiorbpfgives a completeness relation,

1= Py,
(k)

in terms of projection operators

Py= > Py,.

Y.€Y

The sum is over all standard tableaux derived from the Young diagram Y.IEach
projects onto a corresponding invariant subsgace for each Y there arAy such
projection operators (corresponding to the possible standard tableaux of the
diagram), and each of these project onto one ofAReinvariant subspacégy of

the reduction of the regular representation. It follows that the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary group U (n)

The irreps ofU (n) are labeled by thé-box Young standard tableaux with no more
thann rows. A k-index tensor is represented by a Young diagram withoxes

— one typically thinks of this as &-particle state. Fot/(n), a 1-index tensor has
n-components, so there atel-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagram. There?are
2-particle states fof/(n), and as we have seen in secti®i these split into two
irreps: the symmetric and the antisymmetric. Using Young diagrams, we write the
reduction of the 2-particle system as

D@D:Dj@H. (9.20)

Except for the fully symmetric and the fully antisymmetric irreps, the irreps of the
k-index tensors of/ (n) have mixed symmetry. Boxes in arow correspond to indices
that are symmetric under interchanges (symmetric multiparticle states), and boxes
in a column correspondto indices antisymmetric under interchanges (antisymmetric
multiparticle states). Since there are onlyabels for the particles, no more than
n particles can be antisymmetrized, and hence only standard tableaux witmup to
rows correspond to irreps éf(n).

The number of standard tableafyx, derived from a Young diagram Y is given in
(9.16. Interms of irreducible tensors, the Young diagram deteesithe symmetries
of the indices, and thAy distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. This is illustrated in fig-
ure9.2

For a givenU (n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tablegobtained by inserting
the numberd,2,...,ninto Y in the manner described in sectiér8.1 Thus the
dimension of an irrep ot/ (n) equals the number of such Young tableaux, and we
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note that all irreps with the same Young diagram have the same dimension. For
U(2), thek = 2 Young tableaux of the symmetric and antisymmetric irreps are

(11, [1[2], [2[2), and ,

so the symmetric state df (2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formul&s4 and ©.15 for the dimensions of

the symmetry operators. Féf(3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle irrep
is 3-dimensional, again in agreement with4) and 6.15. In sectior9.4.3we state

and prove a dimension formula for a general irred gfn).
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Y, Py, dvy,
n(n+1)(n+2)
JE e
4
LR
3] n(n®-1)
3
1] 3] 4 !
2 3
I (n—2)én—l)n
®[2]® — n’

Table 9.1 Reduction of 3-index tensor. The last row shows the direct sum of the Young
tableaux, the sum of the dimensions of the irreps adding ug tand the sum of
the projection operators adding up to the identity as verification of completeness

(3.51).

of direct products stated below, in secti®id.1 We have already treated the decom-
position of the 2-index tensor into the symmetric and the antisymmetric tensors, but
we shall reconsider the 3-index tensor, since the projection operators are different
from those derived from the characteristic equations in seétian

The 3-index tensor reduces to

We@sE-(T2e[ )o@

=[1[23]® é 2/, é 3@. (9.32)
R

The corresponding dimensions and Young projection operators are given i.thble
For simplicity, we neglect the arrows on the lines where this leads to no confusion.

The Young projection operators are orthogonal by inspection. We check complete-
ness by a computation. In the sum of the fully symmetric and the fully antisymmetric
tensors, all the odd permutations cancel, and we are left with

=S =)

Expanding the two tensors of mixed symmetry, we obtain

o k) =R
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Orthogonal groups

Orthogonal groupSO(n) is the group of transformations that leaves invariant a
symmetric quadratic fornty, ¢) = ¢,.¢"¢”

gwj:guu:u—(—o—)—v /L7U:172,...77’L. (101)
If (¢, ¢q) is an invariant, so is its complex conjugateq)* = ¢*”q,q., and
g’u'y = gl/'u' = u—)—o—(— Vv (10.2)

is also aninvarianttensor. The matrX = g,,, g must be proportionalto unity, as
otherwise its characteristic equation would decomposeéfiaingn-dimensional
rep. A convenient normalization is
gyagal[ — 5;
et = —— (10.3)
As the indices can be raised and lowered at will, nothing iseghby keeping the

arrows. Our convention will be to perform all contractionghwnetric tensors with
upper indices and omit the arrows and the open dots:

g“u =Hu V. (104)
All other tensors will have lower indices. For example, Liegp generator€r;),,”
from (4.37) will be replaced by

=J“’-—>(Ti)w=J--

The invariance conditior4(36 for the metric tensor

J_H_L

7o + (T; ) 9uo =0 (10.5)
becomes, in this conventlon, a statement thabién) generators are antisymmet-
ric:

L
(T3),,, =—(T3),,, - (10.6)
Our analysis of the reps &fO(n) will depend only on the existence of a sym-
metric metric tensor and its invertability, and not on itgezivalues. The resulting
Clebsch-Gordan series applies both to the comf@i@xt:) and noncompact orthog-
onal groups, such as the Minkowski gro8iP (1, 3). In this chapter, we outline the
construction ofSO(n) tensor reps. Spinor reps will be taken up in chafiter
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10.1 TWO-INDEX TENSORS

In section9.1we have decomposed tI5%¢/(n) 2-index tensors into symmetric and
antisymmetric parts. Fo§O(n), the rule is to lower all indices on all tensors, and
the symmetric state projection operatdrd) is replaced by

Suv,ps = Gpp' 9o’ Spvs”

1
(gwgw + GupGvo)

T

From now on, we drop all arrows amd”’s and write ©.4) as

-+ C

1 1
GuoGuvp = 5(9;1091/;) + gupgua) + §(g;wgup - gupgua) . (107)
The new invariant, specific t§O(n), is the index contraction:
T;LV,pU = GuvYpo 5 T= ) C . (108)

The characteristic equation for the trace invariant

- ) O C —nT (10.9)

yields the trace and the traceless part projection opex#ds3, (9.54). As T is
symmetric,ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition o$O(n) 2-index tensors is

traceless symmetric:

1 1 j [ 1
(P2)uu,pa = 5 (g;wgup + gupgua) - Eguugpa = - ED C )

(10.10)
singlet: (P1),,p0 = g,wg,,gz ) C. (10.11)

. . 1
antisymmetric: (P3) ., p0 = 5 (Gno9vp — GupGve) = I . (10.12)

The adjoint rep 9.57) of SU(n) is decomposed into the traceless symmetric and
the antisymmetric parts. To determine which of them is tive adjoint rep, we sub-
stitute them into the invariance conditiok)(5. Only the antisymmetric projection
operator satisfies the invariance condition

J—Lii

so the adjoint rep projection operator 180 (n

E}{ . I . (10.13)
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Young tableaux [ | x[ ] = o + H + [T]

Dynkin labels (10...) x (10...) = (00...) + (010...) + (20...)
Dimensions n? = 1 o+ by (nt2) (1)
Dynkin indices 2n— = 0 nt2

Vs it s N

Table 10.150(n) Clebsch-Gordan series fof@ V.

The dimension o5O(n) is given by the trace of the adjoint projection operator:

N=trPs— :@. (10.14)

Dimensionsof the otherrepsandthe Dynkin indices(seesection?.5) arelistedin
table10.1.
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Adding the two equations we get

e T et

verifying the completeness relation.

For 4-index tensors the decomposition is performed as in the 3-index case, result-
ing in table9.2

Acting with any permutation on the fully symmetric or antisymmetric projection
operators gives 1 times the projection operator (séed and 6.18). For projection
operators of mixed symmetry the action of a permutation is not as simple, because
the permutations will mix the spaces corresponding to the distinct tableaux. Here
we shall need only the action of a permutation withinra; 3symbol, and, as we
shall show below, in this case the result will again be simple, a faetawr 0.
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Chapter Twenty

E- family and its negative-dimensional cousins

Parisi and Sourlag[/ (] have suggested that a Grassmann vector space of dimension
n can be interpreted as an ordinary vector space of dimensioAs we have seenin
chapterl 3, semisimple Lie groups abound with examples in whichan —n sub-
stitution can be interpreted in this way. An early example was Penrose’s bitid}s [
reps ofSU(2) = Sp(2) constructed as§O(—2), and discussed here in chapier

This is a special case of a general relation betw#@(n) andSp(—n) established

in chapterl3; if symmetrizations and antisymmetrizations are intergjeah reps

of SO(n) becomeSp(—n) reps. Here we work out in detail a 1977 example of a
negative-dimensions relatiori{], subsequently made even more intriguirig][by
Cremmer and Julia’s discovery of a globa} symmetry in supergravitysf].

We extend the Minkowski space into Grassmann dimensions by requiring that
the invariant length and volume that characterize the Lorentz gr8G§3; 1) or
SO(4) — compactness plays no role in this analysis) become a quadratic and a
quartic supersymmetric invariant. The symmetry group of the Grassmann sector
will turn out to be one 0o50(2), SU(2), SU(2) x SU(2) x SU(2), Sp(6), SU(6),
S0O(12), or E7, which also happens to be the list of possible global symmetries of
extended supergravities.

As shown in chaptet0, SO(4) is the invariance group of the Kronecker dejta
and the Levi-Civita tensat,,,; hence, we are looking for the invariance group of
the supersymmetric invariants

(@,9) =guma"y”,
(.%', Y, z, w) = euuopxuyyzawp ) (201)

where u, v, ... =4,3,2,1,—1,—2, ..., —n. Our motive for thinking of the Grass-

mann dimensionsas —n isthat we definethedimension asatrace(3.52), n = 6%, and
inaGrassman(orfermionic)world eachracecarrlesamlnusmgn.Forthequédratlc

invariantg,,,, alone,the invariancegroupis the orthosymplectiaD.Sp(4, n). This
group [177] is orthogonain the bosonicdimensionsndsymplecticin the Grass-
manndimensionsbecauseéf g, is sSymmetricin thev, . > 0 indices,it mustbe
antisymmetridn ther, p < 0 indices.In this way the supersymmetryiesin with
the SO(n) ~ Sp(—n) equivalencelevelopedn chapterl3.

Followingthisline of reasoningacuarticinvarianttensote,,, . ,, antisymmetrian
ordinarydimensionsijs symmetricin the GrassmanimlimensionsOur taskis then
to determineall groupsthatadmitan antisymmetricquadraticinvariant,together
with a symmetricquarticinvariant.
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20.3.150(4) or A; + A, algebra

Thefirst solution,d = 4, is nota surprisejit was.SO(4), Minkowski or euclidean
version,that motivatedthe whole project. The quarticinvariantis the Levi-Civita
tensore ... Evenso,the projectorsconstructedireinteresting Taking

QLo = 9" 9" ecory (20.25)
one can immediately calculat2(.9):
Q% =4P;. (20.26)
The projectorsZ0.149 become
1 1 1 1
Pa=-P3+- P;=-P3— - 20.27
a4=5Ps+7Q, Pr=-P;—-Q, ( )

and the dimensions af¥ = d; = 3. Also bothP 4 andP satisfy the invariance
condition, the adjoint rep splits into two invariant subspaces. In this way, one shows
that the Lie algebra ob6O(4) is the semisimpleSU (2) + SU(2) = Ay + A;.
Furthermore, the projection operators are preciselytfiesymbols used by 't Hooft
[164] to map the self-dual and self-antidudlD(4) antisymmetric tensors onto
SU(2) gauge group:

1 1
16 4 16 16 5
(PA)i/p = Z (égéu - gl Guvp + et up) = _Z naﬁ 77ap )

’ 1 ' ' 1 = M=
(Po)p =1 (5500 = 900 = €*0p) = = Tl T - (20.28)
The only differenceis thatinsteadof usinganindex pair #, 't Hooft indexesthe
adjointspacedya = 1,2, 3. All identities listedin theappendixof ref.[164], now
follow from therelationsof section20.1.
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