
Chapter 26

Continuous symmetry
factorization

Hard work builds character.
— V.I. Warshavski, Private Investigator

Trace formulas relate short time dynamics (unstable periodic orbits) to long
time invariant state space densities (natural measure). Higher dimensional
dynamics requires inclusion of higher-dimensional compact invariant sets,

such as partially hyperbolic invariant tori, into trace formulas. A trace formula for
a partially hyperbolic (N + 1)-dimensional compact manifold invariant under N
global continuous symmetries is derived here. In this extension of ‘periodic orbit’
theory there are no or very few periodic orbits - the relative periodic orbits that
the trace formula has support on are almost never eventually periodic.

The classical trace formula for smooth continuous time flows
chapter 21

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
relates the spectrum of the evolution operator

L(x′, x) = δ
(
x′ − f t(x)

)
eβA(x,t) (26.1)

to the unstable periodic orbits p of the flow f t(x). This formula (and the associated
spectral determinants and cycle expansions) is valid for fully hyperbolic flows.

chapter 22

Here we derive the corresponding formula for dynamics invariant under a
compact group of symmetry transformations. In what follows, a familiarity with
basic group-theoretic notions is assumed, with the definitions relegated to ap-
pendix A10.1.

fast track:

chapter 30, p. 571
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 489

26.1 Compact groups

All the group theory that we shall need here is given by

The Peter-Weyl Theorem, and its corollaries: A compact Lie group
G is completely reducible, its representations are fully reducible (just
as in the finite group representation theory), every compact Lie group
is a closed subgroup of U(n) for some n, and every continuous, uni-
tary, irreducible representation of a compact Lie group is finite di-
mensional.

The theory of semisimple Lie groups is elegant, perhaps too elegant. In what
follows, we serve group theoretic nuggets in need-to-know portions, offering a
pedestrian route through a series of simple examples of familiar aspects of group
theory and Fourier analysis, and a high, cyclist road in the text proper.

But main idea is this: the character χ(m)(θ) of the Frobenius-Weyl representa-
tion theory is a generalization to all compact continuous Lie groups of the weight
eiθm in the Fourier decomposition of a smooth function on a circle into eigen-
modes of translation. mth Fourier component fits m node function around the
circle; (m1,m2, . . . ,mN) representation of a compact Lie group fits a correspond-
ing multi-mode function onto the smooth manifold swept out by the action of the
group. So a basis for a d-dimensional representation (m1,m2, . . . ,mN) of an N-
dimensional compact Lie group is a set of d linearly independent eigenfunctions
on the N-dimensional compact group manifold, with m1, m2, . . . , mN ‘nodes’
along the N directions needed to span the manifold. For a circle this is Fourier
analysis; for a sphere these are spherical harmonics, and the Peter-Weyl theorem
states that analogous expansion exists for every compact Lie group. We will never
need to construct these explicitly.

exercise 26.2

26.1.1 Group representations

Let qa be a vector in d-dimensional vector space V , and G be a group of linear
transformations

q′a = D(g)a
bqb , a, b = 1, 2, . . . , d , g ∈ G

(repeated indices summed throughout this chapter). The [d×d] matrices D(g) form
a representation of the group G. Vectors in the dual space q transform as

q′a = D(g)a
b qb .

Tensors transform as

h′ab
c = D(g)a

f D(g)b
eD(g)c

d h f e
d .
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 490

A function H is an invariant function if (and only if) for any transformation
g ∈ G and for any set of vectors q, r, s, . . .

H(D(g)†q,D(g)†r, . . .D(g)s) = H(q, r, . . . , s) . (26.2)

Unitary transformations connected to the identity can be generated by sequences
of infinitesimal transformations

D(g)a
b ' δb

a + iεi(Ti)b
a εi ∈ R , Ti hermitian ,

and |εi| � 1. (More generally, one also needs to study invariance under discrete
coordinate transformations (see chapter 25).

Consider a multilinear invariant function

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

In terms of the generators Ti, H is invariant if all generators “annihilate" it, Ti ·h =

0:

(Ti)a′
a h c...

a′b... + (Ti)b′
b h c...

ab′... − (Ti)c
c′h

c′...
ab... + . . . = 0 . (26.3)

example 26.1

p. 500

Vector space V is irreducible if the only invariant subspaces of V under the
action of G are (0) and V . If every V on which G acts can be written as a direct
sum of irreducible subspaces, then G is completely reducible.

26.1.2 Group integrals

Consider a group integral of form∫
dg D(g)a

bD(g)c
d , (26.4)

where D(g)a
b is a unitary [d×d] matrix representation of g ∈ G, G a compact Lie

group, D(g)c
d is the matrix representation of the action of g on the dual vector

space,

D(g)c
d = (D(g)†)d

c ,

and the integration is over the entire range of g ∈ G, G a compact Lie group. For a
finite group G with |G| group elements the normalized measure is a discrete sum,

dµ(x) =
1
|G|

∑
g

δ(gx) .
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 491

For continuous groups, the integration measure dg is known as the Haar measure,
and, given an explicit parametrization of the group manifold, is explicitly com-
putable (see example 26.4 and example 26.5). However, we do need such explicit

exercise 26.1
parametrizations, as the integral (26.4) over the entire group is defined by two
requirements:

1. Normalization: The group average of an scalar quantity is the quantity it-
self, ∫

dg = 1 . (26.5)

2. Orthonormality of irreducible representations. How do we define∫
dg D(g)a

b ?

The action of g ∈ G is to rotate a vector xa into x′a = D(g)a
bxb

Manifold traced out by action of G
for all possible group elements g

x
x’

g

The averaging smears x in all directions, hence the second integration rule∫
dg D(g)a

b = 0 , if D(g) is non-trivial representation , (26.6)

simply states that the average over all rotations of a vector is zero.

A representation is trivial (a ‘singlet’) if D(g) = 1 for all group elements g. In
this case no averaging is taking place, and the first integration rule (26.5) applies.

What happens if we average a bilinear combination of a pair of vectors x, y?
There is no reason why such pair should average to zero; for example, we know
that the scalar function |x|2 =

∑
a xax∗a = xaxa is invariant under unitary transfor-

mations, so it cannot have a vanishing average. Therefore, in general∫
dg D(g)a

bD(g)c
d , 0 . (26.7)

To get a feeling for what the right-hand side looks like, we recommend that you
work out the examples.

example 26.2

p. 500
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 492

Now let D(g) be any irreducible [d×d] rep. Irreducibility (known in this context
as ‘Schur’s Lemma’) means that any invariant [d×d] tensor Aa

b is proportional to
δa

b. As the only bilinear invariant is δa
b, the Clebsch-Gordan series

=
1
d

+

irreps∑
λ

λ (26.8)

contains one and only one singlet. Only the singlet survives the group averaging,
and ∫

dg D(λ)(g)a
dD(λ)(g)b

c =
1
d
δd

cδ
b
a . (26.9)

is true for any [d×d] irreducible rep D(λ)(g).

If we take D(µ)(g)αβ and D(λ)(g)d
c in inequivalent representations λ, µ (there

is no matrix K such that D(λ)(g) = KD(µ)(g)K−1 for any g ∈ G), then there is no
way of forming a singlet, and∫

dg D(λ)(g)a
dD(µ)(g)βα = 0 if λ , µ . (26.10)

26.1.3 Characters

The trace of an irreducible [d×d] matrix representation λ of g is called the char-
acter of the representation:

χ(λ)(g) = tr D(λ)(g) = D(λ)(g)a
a . (26.11)

The character of the conjugate representation is

χ(λ)(g−1) = tr D(λ)(g)† = D(λ)(g)a
a = χ(λ)(g)∗ . (26.12)

Contracting (26.8) with two arbitrary invariant [d×d] tensors hd
a and ( f †)b

c, we
obtain the character orthonormality relation∫

dg χ(λ)(hg) χ(µ)(g f ) = δλµ
1
dλ
χ(λ)(h f †) (26.13)

The character orthonormality tells us that if two group invariant quantities share a
D(λ)(g)D(λ)(g−1) pair, the group averaging sews them into a single group invariant
quantity. The replacement of D(λ)(g)a

b by the character χ(λ)(h−1g) does not mean
that the matrix structure is lost; D(λ)(g)a

b can be recovered by differentiating

D(g)a
b =

d
dhb

aχ
(λ)(h−1g) . (26.14)

The essential group theory we shall need here is most compactly summarized
by
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 493

The Group Orthogonality Theorem: Let Dµ, Dµ′ be two irreducible matrix repre-
sentations of a compact group G of dimensions dµ, dµ′ ,∫

dg D(µ)(g)a
bD(µ′)(g−1)b′

a′ =
1
dµ
δµ,µ′δ

a′
a δ

b′
b .

The new trace formula follows from the full reducibility of representations of
a compact group G acting linearly on a vector space V , with irreducible repre-
sentations labeled by sets of integers µ = (µ1, · · · , µN), and the vector space V
decomposed into invariant subspaces Vµ. For a N-dimensional compact Lie group
G the fundamental result is the Weyl full reducibility theorem, with projection
operator onto the Vµ irreducible subspace given by

Pµ = dµ

∫
G

g χ(µ)(g−1)U(g) . (26.15)

The group elements g = g(θ1, . . . , θN) = eiθ·T are parameterized by N real numbers
{θ1, . . . , θN} of finite range, hence designation ‘compact’. The N group generators
Ta, a = 1, · · · ,N close the Lie algebra of G.

26.1.4 Transformation operators, projection operators

Suppose we have an arbitrary function or set of functions. How do we obtain
functions with desired symmetry properties? If f is an arbitrary function,

Pαi j f =
dα
|G|

∑
G

D(α)(−1)g f = Fα
i j

which is either zero or a basis function for the ith row of irrep α: a function of
symmetry species (α, i).

example 26.3

p. 501

example 26.4

p. 501

example 26.5

p. 501

The character χ is the trace χ(µ)(g) = tr Dµ(g) =
∑dµ

i=1 Dµ(g)ii , where Dµ(g) is
a [dµ × dµ]-dimensional matrix representation of action of the group element g on
the irreducible subspace Vµ. We will sometimes employ notation g as a shorthand
for D(g), i.e., by x′ = gx we mean the matrix operation x′i =

∑d
j=1 D(g)i jx j, and

by f ′(x) = g f (x) = f (gx), f (x) a smooth function over the state space x ∈ M, we
mean f ′(x) = f (D(g)x).

For an invariant scalar quantity the average over the group in (26.15) must
be the quantity itself, so the group integral is weighted by the normalized Haar
measure (unit group volume)

∫
G g = 1, and dµ is the multiplicity of degenerate

eigenvalues in representation µ.
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 494

26.2 Continuous symmetries of dynamics

If action of every element g of a compact group G commutes with the flow ẋ =

v(x),

D(g)v(x) = v(D(g)x) , D(g) f t(x) = f t(D(g)x) ,

G is a global symmetry of the dynamics. The finite time evolution operator (26.1)
can be written as Lt = etA in terms of the time-evolution generator (19.24)

A = lim
δτ→0+

1
δτ

(
Lδτ− I

)
= −∂i(vi(x)) . (26.16)

The operator etA commutes with all symmetry transformations eiθ·T . For a given
state space point x together they sweep out a (N+1)-dimensional manifold of
equivalent orbits.

As in (25.13), L(y, x) is invariant function. The irreducible eigenspaces of G
are also eigenspaces of the dynamical evolution operator Lt, with the decompo-
sition of the evolution operator to irreducible subspaces, L =

∑
µLµ , following

immediately by application of the projection operator (26.15):

Lt
µ(y, x) = dµ

∫
G

g χ(µ)(g)Lt(Dµ(g−1)y, x) . (26.17)

As G commutes with f t, all eigenfunctions ρ of Lt must be invariant under G,
ρ(x) = ρ(gx). Infinitesimally, in terms of Lie algebra generators Tφρ(x) = 0.

26.2.1 Relative periodic orbits

Relative periodic orbits are orbits x(t) in state spaceM which exactly recur

x(t) = D(gr
p)x(t + rTp) (26.18)

for a fixed relative period T , its repeats r = 1, 2, · · · , and a fixed group action
g ∈ G ofM. This group action is sometimes referred to as a ‘phase’, or a ‘shift’.
Relative periodic orbits are to periodic solutions what relative equilibria (traveling
waves) are to equilibria (steady solutions).

For dynamical systems with continuous symmetries relative periodic orbits are
almost never eventually periodic, i.e., they almost never lie on periodic trajectories
in the full state space. As almost any such orbit explores ergodically the manifold
swept by action of G, they are sometimes referred to as ‘quasiperiodic.’ However,
an orbit can be periodic if it satisfies a special symmetry. If gm = 1 is of finite
order m, then the corresponding orbit is periodic with period mT . If g is not of
finite order k, orbits can be periodic only after the action of g.

chapter 25

In either case, we refer to the orbits inM satisfying (26.18) as relative periodic
orbits.
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26.2.2 Stability of relative periodic orbits

A infinitesimal group transformation maps globally a trajectory in a nearby tra-
jectory, so we expect the initial point perturbations along to group manifold to
be marginal, growing at rates slower than exponential. The argument is akin
to (4.9), the proof of marginality of perturbations along the trajectory. Con-
sider two nearby initial points separated by an infinitesimal group rotation δθ:
δx0 = f δθ(x0) − x0 = v(x0)δθ. By the commutativity of the group with the flow,
f t+δt = f δt+t. Expanding both sides of f t( f δt(x0)) = f δt( f t(x0)), keeping the lead-
ing term in δt, and using the definition of the Jacobian matrix (4.5), we observe
that Jt(x0) transports the velocity vector at x0 to the velocity vector at x(t) at time
t:

v(x(t)) = Jt(x0) v(x0) . (26.19)

In nomenclature of page 83, the Jacobian matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

However, already at this stage we see that if the orbit is periodic, gpx(Tp) =

x(0), at any point along cycle p the velocity v is an eigenvector of the Jacobian
matrix Jp = JTp with an eigenvalue of unit magnitude,

Jp(x) v(x) = v(x) , x ∈ Mp . (26.20)

Two successive points along the cycle separated by δx0 have the same separation
after a completed period δx(Tp) = gpδx0, hence eigenvalue of magnitude 1.

26.3 Symmetry reduced trace formula for flows

As any pair of nearby points on a periodic orbit returns to itself exactly at each
cycle period, the eigenvalue of the Jacobian matrix corresponding to the eigen-
vector along the flow necessarily equals unity for all periodic orbits. In presence of
N-dimensional symmetry Lie group G, further N eigenvalues equal unity. Hence
the trace integral trLt requires a separate treatment for the direction along the flow
and for the N group transformation directions.

To evaluate the contribution of a prime cycle p of period Tp, restrict the inte-
gration to an infinitesimally thin manifoldMp enveloping the cycle and all of its
rotations by G, pick a point on the cycle, and choose a local coordinate system
with a longitudinal coordinate dx‖ along the direction of the flow, N coordinates
dxG along the invariant manifold swept by p under the action of the symmetry
group G, and (d−N−1) transverse coordinates x⊥.

tr pL
t
µ = dµ

∫
G

g χ(µ)(g)
∫
Mp

dx⊥dx‖dxG δ
(
x − D(g)) f t(x)

)
. (26.21)

The integral along the longitudinal, time-evolution coordinate was computed in
(21.16). Eliminating the time dependence by Laplace transform one obtains∫ ∞

0
e−st

∮
p

dx‖ δ‖(x‖ − f t(x‖)) = Tp

∞∑
r=1

e−sTpr . (26.22)
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example 26.6

p. 502

The µ subspace group integral is simple:∫
G

g χ(µ)(g)
∫
Mp

dxG δ
(
xG − Dµ(g) f rTp(xG)

)
= χ(µ)(gr

p). (26.23)

For the remaining transverse coordinates the Jacobian matrix is defined in a (N+1)-
dimensional surface of sectionP of constant (x‖, xG). Linearization of the periodic
flow transverse to the orbit yields∫

P

dx⊥δ
(
x⊥ − Dµ(gr

p) f rTp(x⊥)
)

=
1∣∣∣∣det

(
1 − M̂r

p

)∣∣∣∣ , (26.24)

where M̂p = Dµ(gp)Mp is the p-cycle [(d−1−N)×(d−1−N)] symmetry reduced
Jacobian matrix, computed on the reduced surface of section and rotated by gp.
As in (21.5), we assume hyperbolicity, i.e., that the magnitudes of all transverse
eigenvalues are bounded away from unity.

The classical symmetry reduced trace formula for flows follows by substitut-
ing (26.22) - (26.24) into (26.21):

∞∑
β=0

1
s − sµ,β

= dµ
∑

p

Tp

∞∑
r=1

χ(µ)(gr
p)

er(βAp−sTp)∣∣∣∣det
(
1 − M̂r

p

)∣∣∣∣ . (26.25)

(we can restore eβAp from (26.1) provided that the observable a(x) also commutes
with G.) The sum is over all prime relative periodic orbits p and their repeats,
orbits in state space which satisfy

x(t) = D(gp)x(t + Tp) (26.26)

for a fixed relative period Tp and a fixed shift gp.

The µ = (0, 0, · · · , 0) subspace is the one of most relevance to chaotic dynam-
ics, as its leading eigenfunction, with the fewest nodes and the slowest decay rate,
corresponds to the natural measure observed in the long time dynamics.

In contrast to the case of continuous symmetries, where relative periodic or-
bits are almost never eventually periodic, i.e., they almost never lie on periodic
trajectories in the full state space, for discrete symmetries all relative periodic
orbits are eventually periodic.

Résumé

One of the goals of nonlinear dynamics is to describe the long time evolution of
ensembles of trajectories, when individual trajectories are exponentially unstable.
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The main tool in this effort have been trace formulas because they make explicit
the duality between individual short time trajectories, and long time invariant den-
sities (natural measures, eigenfunctions of evolution operators). So far, the main
successes have been in applications to low dimensional flows and iterated map-
pings, where the compact invariant sets of short-time dynamics are equilibria,
periodic points and periodic orbits. Dynamics in higher dimensions requires ex-
tension of trace formulas to higher-dimensional compact invariant sets, such as
partially hyperbolic invariant tori.

Here we have used a particularly simple direct product structure of a global
symmetry that commutes with the flow to reduce the dynamics to a symmetry
reduced (d−1−N)-dimensional state spaceM/G. The trace formulas do not require
explicit construction (in general difficult), neither of the reduced state space, nor
of the Haar measures.

Amusingly, in this extension of ‘periodic orbit’ theory from unstable 1-dimensional
closed orbits to unstable (N + 1)-dimensional compact manifolds invariant under
continuous symmetries, there are no or very few periodic orbits. Relative periodic
orbits are almost never eventually periodic, i.e., they almost never lie on periodic
trajectories in the full state space, unless forced to do so by a discrete symmetry,
so looking for periodic orbits in systems with continuous spatial symmetries is a
fool’s errand.

Restriction to compact Lie groups in derivation of the trace formula (26.25)
was a matter of convenience, as the general case is more transparent than particu-
lar implementations (such as SO(2) and SO(3) rotations, with their explicit Haar
measures and characters). This can be relaxed as the need arises - much powerful
group theory developed since Cartan-Weyl era is at our disposal. For example, the
time evolution is in general non-compact (a generic trajectory is an orbit of infinite
length). Nevertheless, the trace formulas have support on compact invariant sets in
M, such as periodic orbits and (N+1)-dimensional manifolds generated from them
by action of the global symmetry groups. Just as existence of a periodic orbit is
a consequence of given dynamics, not any global symmetry, higher-dimensional
flows beckon us on with nontrivial higher-dimensional compact invariant sets (for
example, partially hyperbolic invariant tori) for whom the trace formulas are still
to be written.

Commentary

Remark 26.1. Literature Here we need only basic results, on the level of any stan-
dard group theory textbook [11]. This material is covered in any introduction to linear
algebra [9, 16, 19] We found Tinkham [25] the most enjoyable as a no-nonsense, the user
friendliest introduction to the basic concepts. The construction of projection operators
given here is taken from refs. [5–7]. Who wrote this down first we do not know, but we
like Harter’s exposition [12–14] best. Harter’s theory of class algebras offers a more ele-
gant and systematic way of constructing the maximal set of commuting invariant matrices
Mi than the sketch offered here. Chapter 2. of ref. [1] offers a clear and pedagogical
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CHAPTER 26. CONTINUOUS SYMMETRY FACTORIZATION 498

introduction to Lie groups of transformations. For the Group Orthogonality Theorem see,
for example, [7, 26], or Google.

Remark 26.2. Full reducibility of semisimple Lie groups:

The study of integrals over compact Lie groups with respect to Haar measure is im-
portant in many areas of mathematics and physics, see Mehta [17]. In 1896-1897 Frobe-
nius introduced notions of ‘characters’ and group ‘representations’, and proved the full
reducibility of representations of finite groups. The characters χ(µ)(g) for all compact
semisimple Lie groups were constructed and the full reducibility proven by Weyl [21],
extending Cartan’s local Lie algebra classification to a global theory of group representa-
tions. For the history of this period, see the excellent essay by Hawkins [15].

Diagrammatic notation for group theory is explained in the birdtracks.eu webbook.

Remark 26.3. A brief history of relativity: In context of semiclassical quantization
Creagh and Littlejohn [3, 4] concentrate on the case when the continuous symmetry fam-
ily of orbits includes a true periodic orbit (they use infinitesimal variation around true pe-
riodic orbit), not the symmetry reduced case considered here (where almost every relative
periodic orbit of the symmetry-reduced dynamics is not a periodic orbit in the full space).
They emphasize generalized surface of section dynamics. They refer to relative periodic
orbits as ‘generalized periodic orbits’, with ‘generalized period’ Tp = (Tp, µp). They
mention, but do not go to irreducible reps of the symmetry groups, hence no ‘classical
symmetry reduced trace formula for flows’ (26.25) in these papers. Instead, they explic-
itly compute group volumes. In addition to the reduced dynamics weight |det (1 − M⊥)|
they get ∂θ/∂J which we do not have. The Berkeley group did it right for discrete sym-
metries [22, 23].

Here we follow Creagh [2], and in the axially-symmetric case ref. [20]. Creagh refers
to relative periodic orbits as ‘pseudoperiodic’ orbits. Ref. [20] refers to relative periodic
orbits as ‘reduced periodic’ orbits, and to the corresponding orbits in the full state space
as ‘quasiperiodic’. Creagh remarks at the very end of his paper to his formula (6.4) as the
“pleasing result that the quantally reduced spectrum is determined by the classically re-
duced periodic orbits in the usual way.” Ref. [10] discusses a trace formula in symmetry-
reduced space. Muratore-Ginanneschi [18] gives an elegant discussion of ‘zero-modes’ in
the path integral formulation, but does not go to irreps either. Ref. [24] applies the method
to the problems of noninteracting identical particles.
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26.4 Examples

Example 26.1. Lie algebra. As one does not want the rules to change at every step,
the generators Ti are themselves invariant tensors,

(Ti) a
b = D(g)a

a′D(g)b
b′D(A)(g)ii′ (Ti′ ) a′

b′ , (26.27)

where D(A)(g)i j is the adjoint [N×N] matrix representation of g ∈ G. For infinitesimal
transformations, D(g)a

b ' δb
a + iεi(Ti)b

a. The [d×d] matrices Ti are in general non-
commuting, and from (26.3) it follows that they close N-element Lie algebra

TiT j − T jTi = iCi jkTk i, j, k = 1, 2, ...,N ,

where Ci jk are the structure constants.
click to return: p. 490

Example 26.2. A group integral for SU(n) V × V space. Let D(g) be the defining
[n×n] matrix representation of SU(n). The defining representation is non-trivial, so it
averages to zero by (26.6). The first non-vanishing average involves D(g)†, the matrix
representation of the action of g on the conjugate vector space. To avoid dealing with
the multitude of dummy indices, we resort to diagrammatic notation:

D(g)a
` =

��
��
��
��

��
��
��
��a b , D(g)a

` =
��
��
��
��

��
��
��
��a b . (26.28)

For G the arrows and the triangle point the same way, while for G† they point the
opposite way. Unitarity D(g)†D(g) = 1 is given by

D(g)c
aD(g)c

b = D(g)a
cD(g)b

c = δb
a ,

or, diagramatically:

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
�� . (26.29)

In this notation, the D(g)D(g)† integral (26.7) to be evaluated is∫
dg

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b

a

c

d

. (26.30)

For SU(n) the V ⊗ V tensors decompose into the singlet and the adjoint rep

��
��
��
��

��
��
��
��

= 1
n ������ ������ + ������ ������

δd
aδ

b
c = 1

nδ
b
aδ

d
c + 1

a (Ti)b
a (Ti)d

c .

We multiply (26.30) with the above decomposition of the identity. The unitarity relation
(26.29) eliminates G’s from the singlet:

��
��
��
��

��
��
��
��

=
1
n

������ ������ + ������ ������ . (26.31)

The generators Ti are invariant tensors, and transform under G according to (26.27).
Multiplying by G−1

ii , we obtain

= . (26.32)
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Hence, the pair GG† in the defining representation can be traded in for a single G in the
adjoint rep

D(g)a
dD(g)b

c = 1
dδ

d
cδ

b
a + 1

a (Ti)b
a Gi j

(
T j

)d

c

= 1
n + .

The adjoint representation Gi j is non-trivial, so it gets averaged to zero by (26.6). Only
the singlet survives∫

dg =
1
d∫

dg D(g)a
dD(g)b

c =
1
d
δd

cδ
b
a . (26.33)

click to return: p. 491

Example 26.3. Irreducible representations of the SO(2)N abelian group: (Exam-
ple 12.1 continued) All irreducible representations of the SO(2)N abelian group acting
on torus T N are 1-dimensional and labeled by N integers µ = (m1, · · · ,mN). The char-
acter of µ representation is

χ(µ)(g) = e−iµ·φ

click to return: p. 493

Example 26.4. Haar measure for SO(2):

The normalized Haar measure is dg = dφ/(2π).
click to return: p. 493

Example 26.5. Haar measure for SO(3):

SO(3) : dg =
1

2π2 sin2(φ/2)dΩedφ

with dΩe solid angle surface element for unit vector e.

8π2 =

∫
SO(3)

dg

For details, see ref. [8].
click to return: p. 493
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Example 26.6. Trace group integral for SO(2): Parameterize rotations on a circle
by φ ∈ [0, 2π). The normalized Haar measure is ddg = dφ/2π, and a trajectory point
advanced by time t and shifted by φ can be denoted x(t, φ). The character is e−iµφ.
For a circle this is just Fourier analysis, for a general compact semisimple Lie group
Weyl’s generalization of Fourier analysis. Consider projection on the µth subspace of
the integral along the rotational direction

IG =

∫
G

g χ(µ)(g)
∮

dxG δG(x(t)G − (D(g)x(0))G).

Coordinate xG is the set of points swept by [0, 2π] rotation of a point x0 = xG(0, 0), so it
is natural to parametrize it by the rotation angle φ′: xG = x(0, φ′), and rewrite the circle
integral as∮

dxG δ
(
xG − Dµ(LieEl)xG(t, 0)

)
=

∫ 2π

0
dφ′

dx
dφ

(0, φ′) δ
(
x(0, φ′) − x(t, φ′ + φ)

)
.

Inverting the order of integrations,

IG =

∫ 2π

0
dφ′

∫ 2π

0

dφ
2π

e−iµφ dx
dφ

(0, φ′) δ
(
x(0, φ′) − x(t, φ′ + φ)

)
.

The integral is novanishing for smallest φp for which x(0, φ′) = x(t, φ′+φp), and for all its
repeats. Expand the argument of δ function in each such neighborhood φ′ = φp + φ′′.

x(t, φ′ + φp + φ′′) = x(t, φ′ + φp) + φ′′
dx
dφ

(t, φ′ + φp) + · · ·

= x(t, φ′) + φ′′
dx
dφ

(t, φ′) + · · · .

substituting back yields

IG =

∫ 2π

0

dφ′

2π

∞∑
r=1

e−iµφpr dx(0, φ′)
dφ

∫ ε

−ε

dφ′′ e−iµφ′′δ(φ′′
dx
dφ

(0, φ′))

=

∞∑
r=1

e−iµφpr .

click to return: p. 496
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Exercises

26.1. Haar measure for SU(2). SU(2) acts on vectors in
C2, and preserves their absolute value, hence its action
can be parameterized by a 3-sphere S 3, and multiplica-
tion can be viewed as an orthogonal transformation of
S 3. This is a special case of the formula N = n2 − 1 for
the dimension of SU(n). Show that the invariant Haar
measure on SU(2)∫

SU(2)
f (g)dg =

1
4π2

∫ π

−π

∫ π

0

∫ π

0
sin2 φ1 sin φ2dθdφ1dφ2 f (θ, φ1, φ2)

is a normalized surface measure on S 3.

26.2. Relative periodic orbits for circles, bagels and

spheres: (a) Show that relative periodic orbits for a
point scattering specularly in a circular billiard are sin-
gle scattering arcs. Compute their stability. Compute
the spectrum.

(b) Show that relative periodic orbits for a point scat-
tering specularly in the plane that slices symmetrically
upper half of a bagel (floating tire, torus) are single scat-
tering arcs. Compute their stability. Compute the spec-
trum. Compute the escape rate.

(c) Show that relative periodic orbits for a point scatter-
ing specularly within a sphere billiard are single scatter-
ing arcs. Compute their stability, spectrum.
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