
Chapter 24

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a

constant energy surface for a Hamiltonian system in equilibrium to dissipative sys-
tems in nonequilibrium stationary states. In this more general setting the attractor
plays the role of a constant energy surface, and the SRB measure of sect. 19.1 is
a generalization of the Liouville measure. Such measures are purely microscopic
and indifferent to whether the system is at equilibrium, close to equilibrium or far
from it. “Far for equilibrium” in this context refers to systems with large devia-
tions from Maxwell’s equilibrium velocity distribution. Furthermore, the theory
of dynamical systems has yielded new sets of microscopic dynamics formulas for
macroscopic observables such as diffusion constants and the pressure, to which
we turn now.

We shall apply cycle expansions to the analysis of transport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made, and
the all correlations are taken into account by the inclusion of cycles of all periods.
The infinite extent systems for which the periodic orbit theory yields formulas for
diffusion and other transport coefficients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The motivation are physical
problems such as beam defocusing in particle accelerators or chaotic behavior of
passive tracers in 2-dimensional rotating flows, problems which can be described
as deterministic diffusion in periodic arrays.

In sect. 24.1 we derive the formulas for diffusion coefficients in a simple phys-
ical setting, the 2-dimensional periodic Lorentz gas. This system, however, is not
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Figure 24.1: Deterministic diffusion in a finite horizon
periodic Lorentz gas. (T. Zhang)

the best one to illustrate the theory, due to its complicated symbolic dynamics.
Therefore we apply the theory first to diffusion induced by a 1-dimensional maps
in sect. 24.2.

24.1 Diffusion in periodic arrays

Chaos happens - let’s make a better use of it.
— Edward Tenner

The 2-dimensional Lorentz gas is an infinite scatterer array in which diffusion of a
light molecule in a gas of heavy scatterers is modeled by the motion of a point par-
ticle in a plane bouncing off an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of any number of pointlike
fast “light molecules” interacting only with the stationary “heavy molecules” and
not among themselves. As the scatterer array is built up from only defocusing
concave surfaces, it is a pure hyperbolic system, and one of the simplest non-
trivial dynamical systems that exhibits deterministic diffusion, figure 24.1. We
shall now show that the periodic Lorentz gas is amenable to a purely determin-
istic treatment. In this class of open dynamical systems quantities characterizing
global dynamics, such as the Lyapunov exponent, pressure and diffusion constant,
can be computed from the dynamics restricted to the elementary cell. The method
applies to any hyperbolic dynamical system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂

of the dynamical state space M̂ by translatesMn̂ of an elementary cellM, with T
the abelian group of lattice translations. If the scattering array has further discrete
rotational and reflection symmetries (G/T is a point group), each elementary cell
may be built from a fundamental domain M̃ by the action of a discrete (not nec-
essarily abelian) group G. The symbol M̂ refers here to the full state space, i.e.,
both the spatial coordinates and the momenta. The spatial component of M̂ is the
complement of the disks in the whole space.

We shall now relate the dynamics inM to diffusive properties of the Lorentz
gas in M̂.

These concepts are best illustrated by a specific example, a Lorentz gas based
on the hexagonal lattice Sinai billiard of figure 24.2. We distinguish two types
of diffusive behavior; the infinite horizon case, which allows for infinite length
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Figure 24.2: A periodic lattice of reflecting disks
M̂ is tiled by copies of the fundamental domain
M̃. (a) Motion in the fundamental domain M̃ (top
left), the elementary cell M (top right), and the
full state space M̂ (bottom). (b The above trajec-
tory unwrapped in the full space and its 11 copies
obtained by applying the twelve D6 point group
actions to it. (From ref. [12]).

(a) (b)

flights, and the finite horizon case, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our consideration to the finite
horizon case, with disks sufficiently large so that no infinite length free flight is
possible. In this case the diffusion is normal, with x̂(t)2 growing like t. We shall
discuss the anomalous diffusion case in sect. 24.3.

As we will work with three kinds of state spaces, good manners require that
we repeat what tildes, nothings and hats atop symbols signify:

˜ fundamental domain, triangle in figure 24.2

elementary cell, hexagon in figure 24.2

ˆ full state space, lattice in figure 24.2 (24.1)

It is convenient to define an evolution operator for each of the 3 cases of fig-
ure 24.2. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached by the
flow in time t. x(t) = f t(x0) denotes the corresponding flow in the elementary
cell; the two are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (24.2)

the translation of the endpoint of the global path into the elementary cellM. The
quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain M̃; f̃ t(x̃) is
related to f t(x̃) by a discrete symmetry g ∈ G which maps x̃(t) ∈ M̃ to x(t) ∈ M .

chapter 25

Fix a vector β ∈ Rd, where d is the dimension of the state space. We will
compute the diffusive properties of the Lorentz gas from the leading eigenvalue of
the evolution operator (20.10)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (24.3)

where the average is over all initial points in the elementary cell, x ∈ M.

If all odd derivatives vanish by symmetry, there is no drift and the second
derivatives

2dDi j =
∂

∂βi

∂

∂β j
s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x) j〉M ,
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yield a diffusion matrix. This symmetric matrix can, in general, be anisotropic
(i.e., have d distinct eigenvalues and eigenvectors). The spatial diffusion constant
is then given by the Einstein relation (20.40)

D =
1

2d

∑
i

∂2

∂β2
i

s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
2dt
〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the state space vectors
x = (q, p), i.e., if the dynamics is Hamiltonian, the sum is over the d degrees of
freedom.

We now turn to the connection between (24.3) and periodic orbits in the ele-
mentary cell. As the full M̂ → M̃ reduction is complicated by the non-abelian

remark 24.5
nature of G, we discuss only the abelian M̂ → M reduction.

24.1.1 Reduction from M̂ toM

The key idea follows from inspection of the relation

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M

dx is the volume of the elementary cellM. Due to translational symme-
try, it suffices to start with a density of trajectories defined over a single elementary
cellM. As in sect. 20.3, we have used the identity 1 =

∫
M

dy δ(y − x̂(t)) to moti-
vate the introduction of the evolution operator Lt(ŷ, x). There is a unique lattice
translation n̂ such that ŷ = y − n̂, with the endpoint y ∈ M translated back to the
elementary cell, and f t(x) given by (24.2). The difference is a translation by a
constant lattice vector n̂, and the Jacobian for changing integration from dŷ to dy
equals unity. Therefore, and this is the main point, translation invariance can be
used to reduce this average to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x,y∈M

dxdy eβ·( f̂ t(x)−x)δ(y − f t(x)) . (24.4)

As this is a translation, the Jacobian is |∂ŷ/∂y| = 1. In this way the global f̂ t(x)
flow, infinite volume state space averages can be computed by following the flow
f t(x0) restricted to the compact, finite volume elementary cellM. The equation
(24.4) suggests that we study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (24.5)

where x̂(t) = f̂ t(x) ∈ M̂ is the displacement in the full space, but x, f t(x), y ∈ M.
It is straightforward to check that this operator satisfies the semigroup property
(20.26),∫

M

dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) .
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For β = 0, the operator (24.5) is the Perron-Frobenius operator (19.10), with the
leading eigenvalue es0 = 1 because there is no escape from this system (see the
flow conservation sum rule (23.17)).

The rest is old hat. The spectrum of L is evaluated by taking the trace
section 21.2

trLt =

∫
M

dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (24.2). Two kinds of orbits
periodic in the elementary cell contribute. A periodic orbit is called standing
if it is also periodic orbit of the infinite state space dynamics, f̂ Tp(x) = x, and it
is called running if it corresponds to a lattice translation in the dynamics on the
infinite state space, f̂ Tp(x) = x + n̂p. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ friend from chapter 11. In
the theory of area–preserving maps such as the standard map of example 8.7 these
orbits are called accelerator modes, as the diffusion takes place along the momen-
tum rather than the position coordinate. The traveled distance n̂p = n̂Tp(x0) is
independent of the starting point x0, as can be easily seen by continuing the path
periodically in M̂.

The final result is the spectral determinant (22.5)

det (s(β) −A) =
∏

p

exp

− ∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
 , (24.6)

or the corresponding dynamical zeta function (22.11)

1/ζ(β, s) =
∏

p

(
1 −

e(β·n̂p−sTp)

|Λp|

)
. (24.7)

The dynamical zeta function cycle averaging formula (23.24) for the diffusion
constant (20.40), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1

2d
〈x̂2〉ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
. (24.8)

where the sum is over all distinct non-repeating combination of prime cycles. The
derivation is standard, still the formula is strange. Diffusion is unbounded motion
across an infinite lattice; nevertheless, the reduction to the elementary cell enables
us to compute relevant quantities in the usual way, in terms of periodic orbits.

A sleepy reader might protest that x(Tp) − x(0) is manifestly equal to zero for
a periodic orbit. That is correct; n̂p in the above formula refers to a displacement
x̂(Tp) on the infinite periodic lattice, while p refers to closed orbit of the dynamics
f t(x) reduced to the elementary cell, with xp a periodic point in the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have x̂2
p = 0,

and contribute only to the time normalization 〈T〉ζ . The mean square displace-
ment 〈x̂2〉ζ gets contributions only from the periodic runaway trajectories; they
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Figure 24.3: (a) f̂ (x̂), the full space sawtooth map
(24.20), Λ > 2. (b) f (x), the sawtooth map re-
stricted to the unit circle (24.23), Λ = 6.
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are closed in the elementary cell, but on the periodic lattice each one grows like
x̂(t)2 = (n̂p/Tp)2t2 = v2

pt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transport or no transport at all:
diffusion arises as a balance between the two kinds of motion, weighted by the
1/|Λp| measure. If the system is not hyperbolic such weights may be abnormally
large, with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ, where λ is the Lyapunov
exponent, and they may lead to anomalous diffusion - accelerated or slowed down
depending on whether the probabilities of the running or the standing orbits are
enhanced.

section 24.3

We illustrate the main idea, tracking of a globally diffusing orbit by the as-
sociated confined orbit restricted to the elementary cell, with a class of simple
1-dimensional dynamical systems where all transport coefficients can be evalu-
ated analytically.

24.2 Diffusion induced by chains of 1-dimensional maps

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers in one bounce, and then the
process is repeated. As was shown in chapter 14, the essential part of this pro-
cess is the stretching along the unstable directions of the flow, and in the crud-
est approximation the dynamics can be modeled by 1-dimensional expanding
maps. This observation motivates introduction of a class of particularly simple
1-dimensional systems.

example 24.1

p. 454

As noted in sect. 24.1.1, the elementary cell cycles correspond to either stand-
ing or running orbits for the map on the full line: we shall refer to n̂p ∈ Z as the
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jumping number of the p cycle, and take as the cycle weight

tp = znpeβn̂p/|Λp| . (24.9)

The diffusion constant formula (24.8) for 1-dimensional maps is

D =
1
2
〈n̂2〉ζ

〈n〉ζ
, (24.10)

where the “mean cycle time” is given by (23.25)

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
, (24.11)

and the “mean cycle displacement squared” by (23.27)

〈n̂2〉ζ =
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
, (24.12)

the primed sum indicating all distinct non-repeating combinations of prime cy-
cles. The evaluation of these formulas for the simple system of example 24.1 will
require nothing more than pencil and paper.

example 24.2

p. 454

24.2.1 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk s(β)

∣∣∣∣∣∣
β=0

, B2 = D , (24.13)

known for k > 2 as the Burnett coefficients. The behavior of the higher order coef-
ficients yields information on the relaxation to the asymptotic distribution function
generated by the diffusive process. Here x̂t is the relevant dynamical variable and
Bk’s are related to moments 〈x̂k

t 〉 of arbitrary order.

Were the diffusive process purely Gaussian

ets(β) =
1

√
4πDt

∫ +∞

−∞

dx̂ eβx̂e−x̂2/(4Dt) = eβ
2Dt (24.14)

the only Bk coefficient different from zero would be B2 = D. Hence, nonvan-
ishing higher order coefficients signal deviations of deterministic diffusion from a
Gaussian stochastic process.

example 24.3

p. 455

We see that deterministic diffusion is not a Gaussian stochastic process. Higher
order even coefficients may be calculated along the same lines.
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Figure 24.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}. The partition is
Markov, as the critical point is mapped onto the
right border of M1+ . (b) The transition graph for
this partition. (c) The transition graph in the com-
pact notation of (24.31) (introduced by Vadim Mo-
roz).

(a) (b) (c)

24.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the critical
points are mapped in finite numbers of iterations onto partition boundary points,
or onto unstable periodic orbits. We will work out here an example for which
this occurs in two iterations, leaving other cases as exercises. The key idea
is to construct a Markov partition (14.2), with intervals mapped onto unions of
intervals.

example 24.4

p. 456

It is by now clear how to build an infinite hierarchy of finite Markov partitions:
tune the slope in such a way that the critical value f (1/2) is mapped into the fixed
point at the origin in a finite number of iterations p f P(1/2) = 0. By taking higher
and higher values of p one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in which rationals are densely
embedded in the unit interval. For example, each of the 6 primary intervals can
be subdivided into 6 intervals obtained by the 2-nd iterate of the map, and for the
critical point mapping into any of those in 2 steps the grammar (and the corre-
sponding cycle expansion) is finite. So, if we can prove continuity of D = D(Λ),
we can apply the periodic orbit theory to the sawtooth map (24.20) for a random
“generic” value of the parameter Λ, for example Λ = 4.5. The idea is to bracket
this value of Λ by a sequence of nearby Markov values, compute the exact diffu-
sion constant for each such Markov partition, and study their convergence toward
the value of D for Λ = 4.5. Judging how difficult such problem is already for a
tent map (see sect. 18.5), this is not likely to take only a week of work.

Expressions like (24.27) may lead to an expectation that the diffusion coeffi-
cient (and thus transport properties) are smooth functions of parameters control-
ling the chaoticity of the system. For example, one might expect that the diffu-
sion coefficient increases smoothly and monotonically as the slope Λ of the map
(24.20) is increased, or, perhaps more physically, that the diffusion coefficient is a
smooth function of the Lyapunov exponent λ. This turns out not to be true: D as
a function of Λ is a fractal, nowhere differentiable curve illustrated in figure 24.5.
The dependence of D on the map parameter Λ is rather unexpected - even though
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Figure 24.5: The dependence of D on the map pa-
rameter a is continuous, but not monotone. Here a
stands for the slope Λ in (24.20). (From ref. [25].)
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for larger Λ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely hyper-
bolic systems such as the Lozi map and the 1-dimensional diffusion map (24.20).
The trouble arises due to non-smooth dependence of the topological entropy on
system parameters - any parameter change, no mater how small, leads to creation
and destruction of infinitely many periodic orbits. As far as diffusion is concerned
this means that even though local expansion rate is a smooth function of Λ, the
number of ways in which the trajectory can re-enter the initial cell is an irregular
function of Λ.

The lesson is that lack of structural stability implies lack of spectral stability,
and no global observable is expected to depend smoothly on the system parame-
ters. If you want to master the material, working through one of the deterministic
diffusion projects on ChaosBook.org/pages is strongly recommended.
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24.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter ?? have on transport properties? A
marginal fixed point affects the balance between the running and standing orbits,
thus generating a mechanism that may result in anomalous diffusion.

example 24.5

p. 457

D vanishes by the implicit function theorem, z′′(β)|β=1 = 0 when α ≤ 1. The
physical interpretation is that a typical orbit will stick for long times near the 0
marginal fixed point, and the ‘trapping time’ will be larger for higher values of the
intermittency parameter s (recall α = 1/s). In that case one needs to look more
closely at the behavior of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with re-
spect to expectation values of state space observables (see sect. 24.1): if we use
the diffusion dynamical zeta function (24.7), we may write the diffusion coeffi-
cient as an inverse Laplace transform, in such a way that the distinction between
maps and flows has vanished. In the case of 1-dimensional diffusion we thus have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds est ζ

′(β, s)
ζ(β, s)

∣∣∣∣∣∣
β=0

(24.15)

where the ζ′ refers to the derivative with respect to s.

The evaluation of inverse Laplace transforms for high values of the argument
is most conveniently performed using Tauberian theorems. We shall take

ω(λ) =

∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone as x → ∞; then, as λ 7→ 0 and x 7→ ∞ respectively (and
ρ ∈ (0,∞),

ω(λ) ∼
1
λρ

L
(

1
λ

)
if and only if

u(x) ∼
1

Γ(ρ)
xρ−1L(x) ,

where L denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1. Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ

+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1) + J(e−s, α)

))
cosh β

1 − 4
Λ

e−s cosh β − Λ−4
Λζ(1+α) e

−s(e−s, α + 1) cosh βJ
.

Taking the second derivative with respect to β we obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0
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=

4
Λ

+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1) + J(e−s, α)

)(
1 − 4

Λ
e−s − Λ−4

Λζ(1+α) e
−sJ(e−s, α + 1)

)2 = gα(s) . (24.16)

The asymptotic behavior of the inverse Laplace transform (24.15) may then be
evaluated via Tauberian theorems, once we use our estimate for the behavior of
Jonquière functions near z = 1. The deviations from normal behavior correspond
to an explicit dependence of D on time. Omitting prefactors (which can be calcu-
lated by the same procedure) we have

gα(s) ∼


s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:
exercise 24.6

〈(x − x0)2〉t ∼


tα for α ∈ (0, 1)
t/ ln t for α = 1
t for α > 1 .

(24.17)

Résumé

Perfection itself is imperfection.
— Vladimir Horowitz

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only to the finite Lyapunov time TLyap ≈ λ

−1 ln |L/δx| . Beyond that, chaos rules.
We have discussed the implications in sect. 1.8: chaos is good news for prediction
of long term observables such as transport in statistical mechanics.

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )

2

|Λp1 · · ·Λpk |
.

Such formulas are exact; the issue in their applications is what are the most ef-
fective schemes of estimating the infinite cycle sums required for their evaluation.
Here there are no phenomenological macroscopic parameters; quantities such as
transport coefficients are calculable to any desired accuracy from the microscopic
dynamics.

For systems of a few degrees of freedom these results are on rigorous footing,
but there are indications that they capture the essential dynamics of systems of
many degrees of freedom as well.
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Though superficially indistinguishable from the probabilistic random walk
diffusion, deterministic diffusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of the diffusion constant on the system
parameters (see sect. 1.8), and through non-Gaussion relaxation to equilibrium

section 1.8
(non-vanishing Burnett coefficients).

That Smale’s “structural stability" conjecture turned out to be wrong is not a
bane of chaotic dynamics - it is actually a virtue, perhaps its most dramatic ex-
perimentally measurable prediction. As long as microscopic periodicity of the
physical system, such as a face of a crystal, is exact, the prediction is counterin-
tuitive for a physicist - transport coefficients are not smooth functions of system
parameters, rather they are non-monotonic, nowhere differentiable functions.

Commentary

Remark 24.1. Lorentz gas. The “Lorentz gas” is one of the simplest hyperbolic
Hamiltonian dynamical systems that exhibits chaos and deterministic diffusion. The orig-
inal Lorentz gas [30] assumed a random distribution of heavy scatterers; a description of
such gas requires statistical assumptions about the distribution of scatterers. A periodic
Lorenz gas (configuration of scatterers invariant under a discrete group of translations of
the plane), however, is amenable to pure deterministic description. Ergodic properties of
periodic Lorenz gases were first studied by Sinai [33], and its diffusive properties have
been extensively studied ever since [5–8, 16, 19, 31]. One distinguishes the infinite hori-
zon diffusive behavior, which allows for infinite length flights, from the finite horizon
case [7], where the particle always hits the next disk in finite time, and the diffusion is
normal [4, 7], with x̂(t)2 growing like t. Most of the periodic Lorentz gas literature, such
as Bunimovich and Sinai [7], is focused on the symmetries under discrete translations of
periodic tilings of the plane, usually defined by a parallelepipedal “primitive unit cell”
(also called “fundamental domain” in literature; here that term will be reserved for the
smallest tile that tiles the hexagon). However, for a triangular periodic Lorentz gas the
full symmetry group is the space group p6mm (see Chapter .11 of ref. [10] for a discus-
sion of the geometry of space groups), and the natural tiling is in terms of the hexagon
centered on the scattering disk (“Wigner-Seitz cell”, “Voronoi cell”). For a recent review
see Dettmann [13].

Remark 24.2. Who’s dunnit? Cycle expansions for the diffusion constant of a particle
moving in a periodic array have been introduced by Artuso [1] (exact dynamical zeta func-
tion for 1-dimensional chains of maps (24.8)), by Vance [34] (who applied the Artuso [1]
formula to the Lorentz gas) and by Cvitanović, Eckmann and Gaspard [11] (the dynamical
zeta function cycle expansion (24.8) applied to the Lorentz gas). Attempts to evaluate the
Lorentz gas dynamical zeta function cycle expansion were carried out by Schreiber [12]
and Zhang [35].

Remark 24.3. Lack of structural stability for D. Expressions like (24.27) may lead
to an expectation that the diffusion coefficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized, for example, by the Lyapunov
exponent λ = ln Λ). This turns out not to be true: D as a function of Λ is a fractal,
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nowhere differentiable curve shown in figure 24.5. The dependence of D on the map
parameter Λ is rather unexpected - even though for larger Λ more points are mapped
outside the unit cell in one iteration, the diffusion constant does not necessarily grow.
We refer the reader to refs. [20, 32] for early work on the deterministic diffusion induced
by 1-dimensional maps. The sawtooth map (24.20) was introduced by Grossmann and
Fujisaka [23] who derived the integer slope formulas (24.27) for the diffusion constant.
The sawtooth map is also discussed in ref. [18]. The fractal dependence of diffusion
constant on the map parameter is discussed in refs. [25, 27, 28]. Sect. 1.8 gives a brief
summary of the experimental implications; for the the current state of the art of fractal
transport coefficients consult the first part of Klage’s monograph [26]. No fractal-like
behavior of the conductivity for the Lorentz gas has been detected so far [29]. Would
be nice if someone would eventually check these predictions in experiments... Statistical
mechanicians (see, for example, Gallavotti and Cohen [17]) tend to believe that such
complicated behavior is not to be expected in systems with very many degrees of freedom,
as the addition to a large integer dimension of a number smaller than 1 should be as
unnoticeable as a microscopic perturbation of a macroscopic quantity. (P. Cvitanović and
L. Rondoni)

Remark 24.4. Symmetry factorization in one dimension. In the β = 0 limit the
dynamics (24.22) is symmetric under x → −x, and the zeta functions factorize into prod-
ucts of zeta functions for the symmetric and antisymmetric subspaces, as described in
example 25.9:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
∂

∂z
1
ζ

=
1
ζs

∂

∂z
1
ζa

+
1
ζa

∂

∂z
1
ζs
. (24.18)

The leading (material flow conserving) eigenvalue z = 1 belongs to the symmetric sub-
space 1/ζs(0, 1) = 0, so the derivatives (24.11) also depend only on the symmetric sub-
space:

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

=
1

ζa(0, z)
z
∂

∂z
1

ζs(0, z)

∣∣∣∣∣
z=1

. (24.19)

Remark 24.5. Lorentz gas in the fundamental domain. The vector valued nature of
the moment-generating function (24.3) in the case under consideration makes it difficult
to perform a calculation of the diffusion constant within the fundamental domain. Yet we
point out that, at least as regards scalar quantities, the full reduction to M̃ leads to better
estimates. A proper symbolic dynamics in the fundamental domain has been introduced
in ref. [9].

In order to perform the full reduction for diffusion one should express the dynamical
zeta function (24.7) in terms of the prime cycles of the fundamental domain M̃ of the
lattice (see figure 24.2) rather than those of the elementary (Wigner-Seitz) cellM. This
problem is complicated by the breaking of the rotational symmetry by the auxiliary vector
β, or, in other words, the non-commutativity of translations and rotations: see ref. [11].
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length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 24.1: Fundamental domain, w=0.3 .

Remark 24.6. Anomalous diffusion. Anomalous diffusion for 1-dimensional inter-
mittent maps was studied in the continuous time random walk approach in refs. [21, 22].
The first approach within the framework of cycle expansions (based on truncated dynam-
ical zeta functions) was proposed in ref. [2]. Our treatment follows methods introduced
in ref. [12], applied there to investigate the behavior of the Lorentz gas with unbounded
horizon.

Remark 24.7. Jonquière functions. In statistical mechanics Jonquière function
(24.34) appears in the theory of free Bose-Einstein gas, see refs. [14, 15].
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24.4 Examples

Example 24.1. Chains of piecewise linear maps. We start by defining the map f̂
on the unit interval as

f̂ (x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂ + 1 − Λ x̂ ∈ (1/2, 1] , Λ > 2 , (24.20)

and then extending the dynamics to the entire real line, by imposing the translation
property

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (24.21)

As the map is discontinuous at x̂ = 1/2, f̂ (1/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. The map is antisymmetric under the
x̂-coordinate flip

f̂ (x̂) = − f̂ (−x̂) , (24.22)

so the dynamics will exhibit no mean drift; all odd derivatives of the moment-generating
function (20.10) with respect to β, evaluated at β = 0, will vanish.

The map (24.20) is sketched in figure 24.3 (a). Initial points sufficiently close
to either of the fixed points in the initial unit interval remain in the elementary cell for
one iteration; depending on the slope Λ, other points jump n̂ cells, either to the right or
to the left. Repetition of this process generates a random walk for almost every initial
condition.

The translational symmetry (24.21) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the unit
interval curled up into a circle. Associated to f̂ (x̂) we thus also consider the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂ − [x̂] ∈ [0, 1] (24.23)

figure 24.3 (b), where [· · · ] stands for the integer part (24.2). For the piecewise linear
map of figure 24.3 we can evaluate the dynamical zeta function in closed form. Each
branch has the same value of the slope, and the map can be parameterized by a single
parameter, for example its critical value a = f̂ (1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = Λ/2. The larger Λ is, the stronger
is the stretching action of the map.

click to return: p. 443

Example 24.2. Unrestricted symbolic dynamics. Whenever Λ is an integer number,
the symbolic dynamics is exceedingly simple. For example, for the case Λ = 6 illus-
trated in figure 24.3 (b), the elementary cell map consists of 6 full branches, with uniform
stretching factor Λ = 6. The branches have different jumping numbers: for branches 1
and 2 we have n̂ = 0, for branch 3 we have n̂ = +1, for branch 4 n̂ = −1, and finally for
branches 5 and 6 we have respectively n̂ = +2 and n̂ = −2. The same structure reap-
pears whenever Λ is an even integer Λ = 2a: all branches are mapped onto the whole
unit interval and we have two n̂ = 0 branches, one branch for which n̂ = +1 and one for
which n̂ = −1, and so on, up to the maximal jump |n̂| = a − 1. The symbolic dynamics
is thus full, unrestricted shift in 2a symbols {0+, 1+, . . . , (a − 1)+, (a − 1)−, . . . , 1−, 0−},
where the symbol indicates both the length and the direction of the corresponding jump.
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For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps, tsq = tstq. For
the map of figure 24.3 there are 6 distinct weights (24.9):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (23.8). The exact dynamical zeta function (18.13) is given
by the fixed point contributions:

1/ζ(β, z) = 1 − t0+
− t0− − · · · − t(a−1)+

− t(a−1)−

= 1 −
z
a

1 +

a−1∑
j=1

cosh(β j)

 . (24.24)

The leading (and only) eigenvalue of the evolution operator (24.5) is

s(β) = log

1
a

1 +

a−1∑
j=1

cosh(β j)


 , Λ = 2a, a integer . (24.25)

The flow conservation (23.17) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative s(0)′ vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift 〈x̂〉 = 0. The second derivative s(β)′′ yields the diffusion constant
(24.10):

〈n〉ζ = 2a
1
Λ

= 1 , 〈x̂2〉ζ = 2
02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a − 1)2

Λ
(24.26)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 we obtain

D =
1

24
(Λ − 1)(Λ − 2) , Λ even integer . (24.27)

Similar calculation for odd integer Λ = 2k − 1 yields
exercise 24.1

D =
1

24
(Λ2 − 1) , Λ odd integer . (24.28)

click to return: p. 444

Example 24.3. B4 Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B4 (or kurtosis (20.20)) is easily evaluated. For example,
using (24.25) in the case of even integer slope Λ = 2a we obtain

exercise 24.2

B4 = −
1

4! · 60
(a − 1)(2a − 1)(4a2 − 9a + 7) . (24.29)

click to return: p. 444
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Example 24.4. A finite Markov partition. As an example we determine a value
of the parameter 4 ≤ Λ ≤ 6 for which f ( f (1/2)) = 0. As in the integer Λ case,
we partition the unit interval into six intervals, labeled by the jumping number n̂(x) ∈
{M0+

,M1+
,M2+

,M2− ,M1− ,M0− } , ordered by their placement along the unit interval,
figure 24.4 (a).

In general the critical value a = f̂ (1/2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
M1+

. Equating f (1/2) with the right border of M1+
, x = 1/Λ, we obtain a quadratic

equation with the expanding solution Λ = 2(
√

2+1). For this parameter value f (M2+
) =

M0+

⋃
M1+

, f (M2− ) = M0−
⋃
M1− , while the remaining intervals map onto the whole

unit intervalM. The transition matrix (17.1) is given by

φ′ = Tφ =



1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1





φ0+

φ1+

φ2+

φ2−
φ1−
φ0−


. (24.30)

One could diagonalize (24.30) on a computer, but, as we saw in chapter 17, the tran-
sition graph of figure 24.4 (b) corresponding to map figure 24.4 (a) offers more insight
into the dynamics. Figure 24.4 (b) can be redrawn more compactly as transition graph
figure 24.4 (c) by replacing parallel lines in a graph by their sum

= t1 + t2 + t3 . (24.31)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (18.13) of sect. 18.3, we are led to the dynamical zeta
function

1/ζ(β, z) = 1 − t0+
− t1+

− t2+0+
− t2+1+

− t2−1− − t2−0− − t1− − t0−

= 1 −
2z
Λ

(1 + cosh(β)) −
2z2

Λ2 (cosh(2β) + cosh(3β)) . (24.32)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynam-
ical zeta function we verify that

1/ζ(0, 1) = 1 −
4
Λ
−

4
Λ2 = 0 ,

as required by the flow conservation (23.17). Conversely, we could have started by
picking the desired Markov partition, writing down the corresponding dynamical zeta
function, and then fixing Λ by the 1/ζ(0, 1) = 0 condition. For more complicated transi-
tion graphs this approach, together with the factorization (24.18), is helpful in reducing
the order of the polynomial condition that fixes Λ.

The diffusion constant follows from (24.10)
exercise 24.3

〈n〉ζ = 4
1
Λ

+ 4
2

Λ2 , 〈n̂2〉ζ = 2
12

Λ
+ 2

22

Λ2 + 2
32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (24.33)
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Figure 24.6: (a) A map with marginal fixed point.
(b) The map restricted to the unit circle.

(a) (b)

Example 24.5. Anomalous diffusion. Consider a 1-dimensional map of the real line
on itself shown in figure 24.6 (a), with the same properties as in sect. 24.2, except for a
marginal fixed point at x = 0. The corresponding circle map is given in figure 24.6 (b).
As in sect. ??, a branch with support inMi, i = 1, 2, 3, 4 has constant slope Λi, while

f |M0 is of intermittent form. To keep you nimble, this time we take a slightly different
choice of slopes. The toy example of sect. ?? was cooked up so that the 1/s branch cut
in dynamical zeta function was the whole answer. Here we shall take a slightly different
route, and pick piecewise constant slopes such that the dynamical zeta function for
intermittent system can be expressed in terms of the Jonquière function

remark 24.7

J(z, s) =

∞∑
k=1

zk/ks . (24.34)

Once the 0 fixed point is pruned away, the symbolic dynamics is given by the
infinite alphabet {1, 2, 3, 4, 0i1, 0 j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (compare with table ??).
The partitioning of the subinterval M0 is induced by M0k(right) = f̂ −k

(right)(M3
⋃
M4)

(where f̂ −1
(right) denotes the inverse of the right branch of f̂ |M0 ) and the same reason-

ing applies to the leftmost branch. These are regions over which the slope of f̂ |M0 is
constant. Thus we have the following stabilities and jumping numbers associated to
letters:

0k3, 0k4 Λp = k1+α

q/2 n̂p = 1

0l1, 0l2 Λp = l1+α

q/2 n̂p = −1
3, 4 Λp = ±Λ n̂p = 1
2, 1 Λp = ±Λ n̂p = −1 , (24.35)

where α = 1/s is determined by the intermittency exponent (??), while q is to be deter-
mined by the flow conservation (23.17) for f̂ :

4
Λ

+ 2qζ(α + 1) = 1
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(where ζ is the Riemann zeta function), so that q = (Λ−4)/(2Λζ(α+1)). The dynamical
zeta function picks up contributions just by the alphabet’s letters, as we have imposed
piecewise linearity, and can be expressed in terms of a Jonquière function (24.34):

1/ζ0(z, β) = 1 −
4
Λ

z cosh β −
Λ − 4

Λζ(1 + α)
z cosh β · J(z, α + 1) . (24.36)

Its first zero z(β) is determined by

4
Λ

z +
Λ − 4

Λζ(1 + α)
z · J(z, α + 1) =

1
cosh β

.
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EXERCISES 459

Exercises

24.1. Diffusion for odd integer Λ. Show that when the slope
Λ = 2k−1 in (24.20) is an odd integer, the diffusion con-
stant is given by D = (Λ2 − 1)/24, as stated in (24.28).

24.2. Fourth-order transport coefficient. Verify (24.29).
You will need the identity

n∑
k=1

k4 =
1
30

n(n + 1)(2n + 1)(3n2 + 3n − 1) .

24.3. Finite Markov partitions. Verify (24.33).

24.4. Maps with variable peak shape: Consider the fol-
lowing piecewise linear map

fδ(x) =


3x

1−δ x ∈ M1
3
2 −

(
2
δ

∣∣∣ 4−δ
12 − x

∣∣∣) x ∈ M2

1 − 3
1−δ

(
x − 1

6 (2 + δ)
)

x ∈ M3

where M1 =
[
0, 1

3 (1 − δ)
]
, M2 =

[
1
3 (1 − δ), 1

6 (2 + δ)
]
,

M3 =
[

1
6 (2 + δ), 1

2

]
, and the map in [1/2, 1] is obtained

by antisymmetry with respect to x = 1/2, y = 1/2. Write
the corresponding dynamical zeta function relevant to
diffusion and then show that

D =
δ(2 + δ)
4(1 − δ)

See refs. [3, 24] for further details.

24.5. Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(1 5) and (0 5).
ChaosBook.org/projects offers several project-length
deterministic diffusion exercises.

24.6. Accelerated diffusion. (medium difficulty) Consider
a map h, such that ĥ = f̂ of figure 24.6 (b), but now run-
ning branches are turned into standing branches and vice

versa, so that 1, 2, 3, 4 are standing while 0 leads to both
positive and negative jumps. Build the corresponding
dynamical zeta function and show that

σ2(t) ∼


t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

24.7. Recurrence times for Lorentz gas with infinite hori-
zon. Consider the Lorentz gas with unbounded
horizon with a square lattice geometry, with disk ra-
dius R and unit lattice spacing. Label disks accord-
ing to the (integer) coordinates of their center: the se-
quence of recurrence times {t j} is given by the set of
collision times. Consider orbits that leave the disk sit-
ting at the origin and hit a disk far away after a free
flight (along the horizontal corridor). Initial conditions
are characterized by coordinates (φ, α) (φ determines the
initial position along the disk, while α gives the an-
gle of the initial velocity with respect to the outward
normal: the appropriate measure is then dφ cosα dα
(φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how φ(T ) scales
for large values of T : this is equivalent to investigating
the scaling of portions of the state space that lead to a
first collision with disk (n, 1), for large values of n (as
n 7→ ∞ n ' T ).

24.8. Diffusion reduced to the fundamental domain.

Maps such as figure 24.3 are antisymmetric. Re-
duce such antisymmetric maps as in example 10.5, and
write down the formula (24.10) for the diffusion con-
stant D in terms of the fundamental domain cycles (rela-
tive periodic orbits) alone (P. Gaspard says it cannot be
done [11]).
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