
Appendix A2

Discrete symmetries of dynamics

Basic group-theoretic notions are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant ma-
trices. The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct sums
of lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct root λi of invariant matrix M a projection
operator (A2.20):

Pi =
∏
j,i

M − λ j1
λi − λ j

.

Sects. A2.3 and A2.4 develop Fourier analysis as an application of the general
theory of invariance groups and their representations.

A2.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)

We define group, representation, symmetry of a dynamical system, and invariance.

Group axioms. A group G is a set of elements g1, g2, g3, . . . for which compo-
sition or group multiplication g2 ◦ g1 (which we often abbreviate as g2g1) of any
two elements satisfies the following conditions:
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1. If g1, g2 ∈ G, then g2 ◦ g1 ∈ G.

2. The group multiplication is associative: g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The group G contains identity element e such that g◦e = e◦g = g for every
element g ∈ G.

4. For every element g ∈ G, there exists a unique h == g−1 ∈ G such that
h ◦ g = g ◦ h = e.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where |G|, the number of elements, is the order of the group.

Groups are defined and classified as abstract objects by their multiplication
tables (for finite groups) or Lie algebras (for Lie groups). What concerns us in
applications is their action as groups of transformations on a given space, usually
a vector space (see appendix ??), but sometimes an affine space, or a more general
manifoldM.

Repeated index summation. Throughout this text, the repeated pairs of up-
per/lower indices are always summed over

Ga
bxb ≡

n∑
b=1

Ga
bxb , (A2.1)

unless explicitly stated otherwise.

General linear transformations. Let GL(n,F) be the group of general linear
transformations,

GL(n,F) =
{
g : F n → F n | det (g) , 0

}
. (A2.2)

Under GL(n,F) a basis set of V is mapped into another basis set by multiplication
with a [n×n] matrix g with entries in field F (F is either R or C),

e′ a = eb(g−1)b
a .

As the vector x is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′a = ga
bxb .

appendSymm - 11apr2015 ChaosBook.org version15.9, Sep 27 2017



APPENDIX A2. DISCRETE SYMMETRIES OF DYNAMICS 515

Standard rep. We shall refer to the set of [n×n] matrices g as a standard rep
of GL(n,F), and the space of all n-tuples (x1, x2, . . . , xn)>, xi ∈ F on which these
matrices act as the standard representation space V .

Under a general linear transformation g ∈ GL(n,F), the row of basis vectors
transforms by right multiplication as e′ = e g−1, and the column of xa’s trans-
forms by left multiplication as x′ = gx. Under left multiplication the column
(row transposed) of basis vectors e> transforms as e′> = g†e>, where the dual
rep g† = (g−1)> is the transpose of the inverse of g. This observation motivates
introduction of a dual representation space V̄ , the space on which GL(n,F) acts
via the dual rep g†.

Dual space. If V is a vector representation space, then the dual space V̄ is the
set of all linear forms on V over the field F.

If {e(1), · · · , e(d)} is a (right) basis of V , then V̄ is spanned by the dual basis
(left basis) {e(1), · · · , e(d)}, the set of n linear forms e( j) such that

e(i) · e( j) = δ
j
i ,

where δb
a is the Kronecker symbol, δb

a = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (A2.3)

They transform under GL(n,F) as

y′a = (g†)b
ayb . (A2.4)

For GL(n,F) no complex conjugation is implied by the † notation; that interpre-
tation applies only to unitary subgroups of GL(n,C). g can be distinguished from
g† by meticulously keeping track of the relative ordering of the indices,

gb
a → ga

b , (g†)b
a → gb

a . (A2.5)

Defining space, dual space. In what follows V will always denote the defining
n-dimensional complex vector representation space, that is to say the initial, “el-
ementary multiplet” space within which we commence our deliberations. Along
with the defining vector representation space V comes the dual n-dimensional vec-
tor representation space V̄ . We shall denote the corresponding element of V̄ by
raising the index, as in (A2.3), so the components of defining space vectors, resp.
dual vectors, are distinguished by lower, resp. upper indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (A2.6)
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Defining rep. Let G be a group of transformations acting linearly on V , with the
action of a group element g ∈ G on a vector x ∈ V given by an [n×n] matrix g

x′a = ga
bxb a, b = 1, 2, . . . , n . (A2.7)

We shall refer to ga
b as the defining rep of the group G. The action of g ∈ G on a

vector q̄ ∈ V̄ is given by the dual rep [n×n] matrix g†:

x′a = xb(g†)b
a = ga

bxb . (A2.8)

In the applications considered here, the group G will almost always be assumed
to be a subgroup of the unitary group, in which case g−1 = g†, and † indicates
hermitian conjugation:

(g†)a
b = (gb

a)∗ = gb
a . (A2.9)

Hermitian conjugation is effected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and lower indices; transposition
reverses their order. A matrix is hermitian if its elements satisfy

(M†)a
b = Ma

b . (A2.10)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as Mb

a = (M†)b
a = Ma

b.

Invariant vectors. The vector q ∈ V is an invariant vector if for any transfor-
mation g ∈ G

q = gq . (A2.11)

If a bilinear form M(x̄, y) = xaMa
byb is invariant for all g ∈ G, the matrix

Ma
b = ga

cgb
d Mc

d (A2.12)

is an invariant matrix. Multiplying with gb
e and using the unitary condition

(A2.9), we find that the invariant matrices commute with all transformations g ∈
G:

[g,M] = 0 . (A2.13)

Invariants. We shall refer to an invariant relation between p vectors in V and
q vectors in V̄ , which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbyaserdzc , (A2.14)

as an invariant in Vq ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficients hab

cde are components of invariant tensor h ∈ V3 ⊗ V̄2.
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Matrix representation of a group. Let us now map the abstract group G homeo-
morphically on a group of matrices D(G) acting on the vector space V , i.e., in such
a way that the group properties, especially the group multiplication, are preserved:

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 ∈ G is mapped onto the matrix product D(g2 ◦

g1) = D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication:
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =

[D(g)]−1 ≡ D−1(g).

We call this matrix group D(G) a linear or matrix representation of the group G
in the representation space V . We emphasize here ‘linear’ in order to distinguish
the matrix representations from other representations that do not have to be linear,
in general. Throughout this appendix we only consider linear representations.

If the dimensionality of V is d, we say the representation is an d-dimensional
representation. We will often abbreviate the notation by writing matrices D(g) ∈
D(G) as g, i.e., x′ = gx corresponds to the matrix operation x′i =

∑d
j=1 D(g)i jx j.

Character of a representation. The character of χµ(g) of a d-dimensional rep-
resentation D(g) of the group element g ∈ G is defined as trace

χµ(g) = tr D(g) =

d∑
i=1

Dii(g) .

Note that χ(e) = d, since Di j(e) = δi j for 1 ≤ i, j ≤ d.

Faithful representations, factor group. If the mapping G on D(G) is an iso-
morphism, the representation is said to be faithful. In this case the order of the
group of matrices D(G) is equal to the order |G| of the group. In general, how-
ever, there will be several elements h ∈ G that will be mapped on the unit matrix
D(h) = 11. This property can be used to define a subgroup H ⊂ G of the group
G consisting of all elements h ∈ G that are mapped to the unit matrix of a given
representation. Then the representation is a faithful representation of the factor
group G/H.

Equivalent representations, equivalence classes. A representation of a group
is by no means unique. If the basis in the d-dimensional vector space V is changed,
the matrices D(g) have to be replaced by their transformations D′(g), with the new
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matrices D′(g) and the old matrices D(g) are related by an equivalence transfor-
mation through a non-singular matrix C

D′(g) = C D(g) C−1 .

The group of matrices D′(g) form a representation D′(G) equivalent to the rep-
resentation D(G) of the group G. The equivalent representations have the same
structure, although the matrices look different. Because of the cylic nature of the
trace the character of equivalent representations is the same

χ(g) =

n∑
i=1

D′ii(g) = tr D′(g) = tr
(
CD(g)C−1

)
.

Definition: Character tables. Finding a transformation S which simultane-
ously block-diagonalizes the regular representation of each group element sounds
difficult. However, suppose it can be achieved, and we obtain a set of irreps
D(µ)(g), then according to Schur’s lemmas, D(µ)(g) must satisfy a set of orthogo-
nality rations:

dµ
|G|

∑
g

D(µ)
il (g)D(ν)

m j(g
−1) = δµνδi jδlm . (A2.15)

Denote the trace of irrep D(µ)
il as χ(µ), and we call it the character of D(µ). Proper-

ties of irreps can be derived from (A2.15), and we list them as follows:

1. The number of irreps is the same as the number of classes.

2. Dimensions of irreps satisfy
∑r
µ=1 d2

µ = |G|

3. orthonormal relation I :
∑r

i |Ki|χ
(µ)
i χ(ν)∗

i = |G|δµν.
Here, the summation goes through all classes of this group, and |Ki| is the
number of elements in class i. This weight comes from the fact that ele-
ments in the same class have the same character.

4. orthonormal relation II :
∑r
µ χ

(µ)
i χ

(µ)∗
j =

|G|
|Ki |
δi j.

The characters for all classes and irreps of a finite group are conventionally ar-
ranged into a character table, a square array whose rows represent different classes
and columns represent different irreps (as usual, 50% of authors, including Chaos-
Book, will use columns and rows instead). Rules 1 and 2 help determine the num-
ber of irreps and their dimensions. As matrix representation of class {e} is always
the identity matrix, the first column is always the dimension of the corresponding
representation. All entries of the first row are always 1, because the symmetric
irrep is always 1-dimensional. To compute the remaining entries, use properties
3, 4 and the class multiplication tables.
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Definition: Projection operators. We have listed the properties of irreps and
the techniques of constructing character table, but we still do not know how to
construct the similarity transformation S which takes a regular representation into
a block-diagonal form.

One of these invariant subspace is |G|−1 ∑
g ρ(gx), which is the basis of the 1-d

symmetric irrep A. For C3, it is (25.38). But how to get others? We need to resort
to the projection operator:

P(µ)
i =

dµ
|G|

∑
g

D(µ)
ii (g)U(g) (A2.16)

It projects an arbitrary function into the ith basis of irrep D(µ) provided the diagonal
elements of this representation D(µ)

ii is known. P(µ)
i ρ(x) = ρ

(µ)
i .

For 1-dimensional representations, this projection operator is known after we
obtain the character table, since character of 1-d matrix is the matrix itself. But
for 2-dimensional or higher dimensional representations, we need to know the
diagonal elements D(µ)

ii in order to get the bases of invariant subspaces.

Summing i in (A2.16) gives

P(µ) =
dµ
|G|

∑
g

χ(µ)(g)U(g) (A2.17)

This is also a projection operator which projects an arbitrary function onto the
sum of basis of irrep D(µ). We will use this operator to split the trace of evolution
operator into sum over all different irreps.

A2.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought to unitary
form, and the same is true of all compact Lie groups. Hence, in what follows, we
specialize to unitary and hermitian matrices.
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A2.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC† =



λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .



. (A2.18)

Here λi , λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (A2.19)

In the matrix C(M − λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:

λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .


,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j,1

(M − λ j1)C† =
∏
j,1

(λ1 − λ j)



1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .


.

Thus we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j,i

M − λ j1
λi − λ j

, (A2.20)
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which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†



1
. . .

1
0

0
. . .

0


C . (A2.21)

The diagonalization matrix C is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism is that we never need
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness of Pi: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (A2.22)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (A2.23)

As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (A2.24)

It follows from the characteristic equation (A2.19) and the form of the projection
operator (A2.20) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (A2.25)

Hence, any matrix polynomial f (M) takes the scalar value f (λi) on the Pi sub-
space

f (M)Pi = f (λi)Pi . (A2.26)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

A2.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have used M1 to decompose the d-dimensional vector
space V = V1 ⊕ V2 ⊕ · · · . Can M2,M3, . . . be used to further decompose Vi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (A2.27)
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or, equivalently, if projection operators P j constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (A2.28)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λ j[M(i)
2 ,P j] = 0 . (A2.29)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.

An invariant matrix M induces a decomposition only if its diagonalized form
(A2.18) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

According to (A2.13), an invariant matrix M commutes with group transfor-
mations [G,M] = 0. Projection operators (A2.20) constructed from M are poly-
nomials in M, so they also commute with all g ∈ G:

[G,Pi] = 0 (A2.30)

Hence, a [d×d] matrix rep can be written as a direct sum of [di×di] matrix reps:

G = 1G1 =
∑
i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (A2.31)

In the diagonalized rep (A2.21), the matrix g has a block diagonal form:

CgC† =


g1 0 0
0 g2 0

0 0
. . .

 , g =
∑

i

CigiCi . (A2.32)

The rep gi acts only on the di-dimensional subspace Vi consisting of vectors Piq,
q ∈ V . In this way an invariant [d×d] hermitian matrix M with r distinct eigenval-
ues induces a decomposition of a d-dimensional vector space V into a direct sum
of di-dimensional vector subspaces Vi:

V
M
→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (A2.33)
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A2.3 Lattice derivatives

In order to set up continuum field-theoretic equations which describe the evolution
of spatial variations of fields, we need to define lattice derivatives.

Consider a smooth function φ(x) evaluated on a d-dimensional lattice

φ` = φ(x) , x = a` = lattice point , ` ∈ Zd , (A2.34)

where a is the lattice spacing. Each set of values of φ(x) (a vector φ`) is a
possible lattice configuration. Assume the lattice is hyper-cubic, and let n̂µ ∈
{n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along the d positive direc-
tions. The lattice derivative is then

(∂µφ)` =
φ(x + an̂µ) − φ(x)

a
=
φ`+n̂µ − φ`

a
. (A2.35)

Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
the stepping operator in the direction µ(

σµ
)
` j

= δ`+n̂µ, j . (A2.36)

As σ will play a central role in what follows, it pays to understand what it does.

In computer dicretizations, the lattice will be a finite d-dimensional hyper-
cubic lattice

φ` = φ(x) , x = a` = lattice point , ` ∈ (Z/N)d , (A2.37)

where a is the lattice spacing and there are Nd points in all. For a hyper-cubic
lattice the translations in different directions commute, σµσν = σνσµ, so it is
sufficient to understand the action of (A2.36) on a 1-dimensional lattice.

Let us write down σ for the 1-dimensional case in its full [N×N] matrix glory.
Writing the finite lattice stepping operator (A2.36) as an ‘upper shift’ matrix,

σ =



0 1
0 1

0 1
. . .
0 1

0 0


, (A2.38)

is no good, as σ so defined is nilpotent, and after N steps the particle marches
off the lattice edge, and nothing is left, σN = 0. A sensible way to approximate
an infinite lattice by a finite one is to replace it by a lattice periodic in each n̂µ
direction. On a periodic lattice every point is equally far from the ‘boundary’
N/2 steps away, the ‘surface’ effects are equally negligible for all points, and the
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stepping operator acts as a cyclic permutation matrix

σ =



0 1
0 1

0 1
. . .
0 1

1 0


, (A2.39)

with ‘1’ in the lower left corner assuring periodicity.

Applied to the lattice configuration φ = (φ1, φ2, · · · , φN), the stepping operator
translates the configuration by one site, σφ = (φ2, φ3, · · · , φN , φ1). Its transpose
translates the configuration the other way, so the transpose is also the inverse,
σ−1 = σT . The partial lattice derivative (A2.35) can now be written as a multipli-
cation by a matrix:

∂µφ` =
1
a

(
σµ − 1

)
` j
φ j .

In the 1-dimensional case the [N×N] matrix representation of the lattice deriva-
tive is:

∂ =
1
a



−1 1
−1 1

−1 1
. . .

1
1 −1


. (A2.40)

To belabor the obvious: On a finite lattice of N points a derivative is simply a
finite [N×N] matrix. Continuum field theory is a world in which the lattice is so
fine that it looks smooth to us. Whenever someone calls something an “operator,”
think “matrix.” For finite-dimensional spaces a linear operator is a matrix; things
get subtler for infinite-dimensional spaces.

A2.3.1 Lattice Laplacian

In the continuum, integration by parts moves ∂ around,
∫

[dx]φT ·∂2φ→ −
∫

[dx]∂φT ·

∂φ; on a lattice this amounts to a matrix transposition[(
σµ − 1

)
φ
]T
·
[(
σµ − 1

)
φ
]

= φT ·
(
σ−1
µ − 1

) (
σµ − 1

)
φ .

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

∂T =
1
a

(
σ−1 − 1

)
= −σ−1 1

a
(σ − 1) = −σ−1∂ .
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The symmetric (self-adjoint) combination � = −∂T∂

� = −
1
a2

d∑
µ=1

(
σ−1
µ − 1

) (
σµ − 1

)
= −

2
a2

d∑
µ=1

(
1 −

1
2

(σ−1
µ + σµ)

)
=

1
a2 (N − 2d1) (A2.41)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case the [N×N] matrix representation of
the lattice Laplacian is:

� =
1
a2



−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2


. (A2.42)

The lattice Laplacian measures the second variation of a field φ` across three
neighboring sites: it is spatially non-local. You can easily check that it does what
the second derivative is supposed to do by applying it to a parabola restricted to the
lattice, φ` = φ(a`), where φ(a`) is defined by the value of the continuum function
φ(x) = x2 at the lattice point x` = a`.

The Euclidean free scalar particle propagator can thus be written as

∆ =
1

1 − a2h
s �

. (A2.43)

A2.3.2 Inverting the Laplacian

Evaluation of perturbative corrections requires that we come to grips with the
“free” or “bare” propagator M. While the the Laplacian is a simple difference
operator (A2.42), the propagator is a messier object. A way to compute is to start
expanding the propagator M as a power series in the Laplacian

M =
1

m2 − �
=

1
m2

∞∑
k=0

1
m2k�

k . (A2.44)

As � is a finite matrix, the expansion is convergent for sufficiently large m2. To
get a feeling for what is involved in evaluating such series, evaluate �2 in the
1-dimensional case:

�2 =
1
a4



6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

1 −4
. . . 1

1 6 −4
−4 1 1 −4 6


. (A2.45)
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What �3, �4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral, non-local operator, connecting every lattice site to any other
lattice site. Due to the periodicity, these are all Toeplitz matrices, meaning that
each successive row is a one-step cyclic shift of the preceding one. In statistical
mechanics, M is the (bare) 2-point correlation. In quantum field theory, it is called
a propagator.

These matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplification follows from the
observation that the lattice action is translationally invariant. We will show how
this works in sect. A2.4.

A2.4 Periodic lattices

Our task now is to transform M into a form suitable to explicit evaluation.

Consider the effect of a lattice translation φ→ σφ on the matrix polynomial

S [σφ] = −
1
2
φT

(
σT M−1σ

)
φ .

As M−1 is constructed from σ and its inverse, M−1 and σ commute, and S [φ] is
invariant under translations,

S [σφ] = S [φ] = −
1
2
φT · M−1 · φ . (A2.46)

If a function defined on a vector space commutes with a linear operator σ, then the
eigenvalues of σ can be used to decompose the φ vector space into invariant sub-
spaces. For a hyper-cubic lattice the translations in different directions commute,
σµσν = σνσµ, so it is sufficient to understand the spectrum of the 1-dimensional
stepping operator (A2.39). To develop a feeling for how this reduction to invariant
subspaces works in practice, let us continue humbly, by expanding the scope of
our deliberations to a lattice consisting of 2 points.

A2.4.1 A 2-point lattice diagonalized

The action of the stepping operator σ (A2.39) on a 2-point lattice φ = (φ0, φ1) is
to permute the two lattice sites

σ =

[
0 1
1 0

]
.

As exchange repeated twice brings us back to the original configuration, σ2 = 1,
the characteristic polynomial of σ is

(σ + 1)(σ − 1) = 0 ,
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with eigenvalues λ0 = 1, λ1 = −1. The symmetrization, antisymmetrization pro-
jection operators are

P0 =
σ − λ11
λ0 − λ1

=
1
2

(1 + σ) =
1
2

[
1 1
1 1

]
(A2.47)

P1 =
σ − 1
−1 − 1

=
1
2

(1 − σ) =
1
2

[
1 −1
−1 1

]
. (A2.48)

Noting that P0 + P1 = 1, we can project a lattice configuration φ onto the two
normalized eigenvectors of σ:

φ = 1 φ = P0 · φ + P1 · φ ,[
φ1
φ2

]
=

(φ0 + φ1)
√

2

1
√

2

[
1
1

]
+

(φ0 − φ1)
√

2

1
√

2

[
1
−1

]
(A2.49)

= φ̃0n̂0 + φ̃1n̂1 . (A2.50)

As P0P1 = 0, the symmetric and the antisymmetric configurations transform sep-
arately under any linear transformation constructed from σ and its powers.

In this way the characteristic equation σ2 = 1 enables us to reduce the 2-
dimensional lattice configuration to two 1-dimensional ones, on which the value
of the stepping operator σ is a number, λ ∈ {1,−1}, and the normalized eigen-
vectors are n̂0 = 1√

2
(1, 1), n̂1 = 1√

2
(1,−1). As we shall now see, (φ̃0, φ̃1) is the

2-site periodic lattice discrete Fourier transform of the field (φ1, φ2).

A2.5 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice with N sites.

Each application of σ translates the lattice one step; in N steps the lattice is
back in the original configuration

σN = 1 ,

so the eigenvalues of σ are the N distinct N-th roots of unity

σN − 1 =

N−1∏
k=0

(σ − ωk1) = 0 , ω = ei 2π
N . (A2.51)

As the eigenvalues are all distinct and N in number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expounded in appendix A2.2)
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associates with the k-th eigenvalue of σ a projection operator that projects a con-
figuration φ onto k-th eigenvector of σ,

Pk =
∏
j,k

σ − λ j1
λk − λ j

. (A2.52)

A factor (σ − λ j1) kills the j-th eigenvector ϕ j component of an arbitrary vector
in expansion φ = · · · + φ̃ jϕ j + · · · . The above product kills everything but the
eigen-direction ϕk, and the factor

∏
j,k(λk − λ j) ensures that Pk is normalized as

a projection operator. The set of the projection operators is complete,∑
k

Pk = 1 , (A2.53)

and orthonormal

PkP j = δk jPk (no sum on k) . (A2.54)

Constructing explicit eigenvectors is usually not a the best way to fritter one’s
youth away, as choice of basis is largely arbitrary, and all of the content of the
theory is in projection operators (see appendix A2.2). However, in case at hand
the eigenvectors are so simple that we can construct the solutions of the eigenvalue
condition

σϕk = ωkϕk (A2.55)

by hand:

1
√

N



0 1
0 1

0 1
. . .
0 1

1 0





1
ωk

ω2k

ω3k

...
ω(N−1)k


= ωk 1

√
N



1
ωk

ω2k

ω3k

...
ω(N−1)k


The 1/

√
N factor is chosen in order that ϕk be normalized complex unit vectors

ϕ†k · ϕk =
1
N

N−1∑
k=0

1 = 1 , (no sum on k)

ϕ†k =
1
√

N

(
1, ω−k, ω−2k, · · · , ω−(N−1)k

)
. (A2.56)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (A2.57)

as the explicit evaluation of ϕ†k · ϕ j yields the Kronecker delta function for a peri-
odic lattice
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δk j =
1
N

N−1∑
`=0

ei 2π
N (k− j)` . (A2.58)

The sum is over the N unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unless k = j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors (A2.55),
(A2.56) as

(Pk)``′ = (ϕk)`(ϕ
†

k)`′ =
1
N

ei 2π
N (`−`′)k , (no sum on k) . (A2.59)

The completeness (A2.53) follows from (A2.58), and the orthonormality (A2.54)
from (A2.57).

φ̃k, the projection of the φ configuration on the k-th subspace is given by

(Pk · φ)` = φ̃k (ϕk)` , (no sum on k)

φ̃k = ϕ†k · φ =
1
√

N

N−1∑
`=0

e−i 2π
N k`φ` (A2.60)

We recognize φ̃k as the discrete Fourier transform of φ`. Hopefully rediscovering
it this way helps you a little toward understanding why Fourier transforms are full
of eix·p factors (they are eigenvalues of the generator of translations) and when
are they the natural set of basis functions (only if the theory is translationally
invariant).

A2.5.1 Fourier transform of the propagator

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑
kk′

PkMPk′ =
∑
kk′

ϕk(ϕ†k ·M · ϕk′)ϕ
†

k′ .

The matrix

M̃kk′ = (ϕ†k ·M · ϕk′) (A2.61)

is the Fourier space representation of M. According to (A2.57) the matrix Uk` =

(ϕk)` = 1√
N

ei 2π
N k` is a unitary matrix, so the Fourier transform is a linear, unitary

transformation, UU† =
∑

Pk = 1, with Jacobian det U = 1. The form of the
invariant function (A2.46) does not change under φ → φ̃k transformation, and
from the formal point of view, it does not matter whether we compute in the
Fourier space or in the configuration space that we started out with. For example,
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the trace of M is the trace in either representation

tr M =
∑
`

M`` =
∑
kk′

∑
`

(PkMPk′)``

=
∑
kk′

∑
`

(ϕk)`(ϕ
†

k ·M · ϕk′)(ϕ
†

k′)` =
∑
kk′

δkk′ M̃kk′ = tr M̃ .

From this it follows that tr Mn = tr M̃n, and from the tr ln = ln tr relation that
det M = det M̃. In fact, any scalar combination of φ’s, J’s and couplings, such as
the partition function Z[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what’s the payback?

A2.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (A2.55) to convert σ matrices into scalars. If
M commutes with σ, then (ϕ†k · M · ϕk′) = M̃kδkk′ , and the matrix M acts as
a multiplication by the scalar M̃k on the kth subspace. For example, for the 1-
dimensional version of the lattice Laplacian (A2.41) the projection on the k-th
subspace is

(ϕ†k · � · ϕk′) =
2
a2

(
1
2

(ω−k + ωk) − 1
)

(ϕ†k · ϕk′)

=
2
a2

(
cos

(
2π
N

k
)
− 1

)
δkk′ (A2.62)

In the k-th subspace the bare propagator is simply a number, and, in contrast to
the mess generated by (A2.44), there is nothing to inverting M−1:

(ϕ†k · M · ϕk′) = (G̃0)kδkk′ =
1
β

δkk′

m′20 −
2c
a2

∑d
µ=1

(
cos

(
2π
N kµ

)
− 1

) , (A2.63)

where k = (k1, k2, · · · , kµ) is a d-dimensional vector in the Nd-dimensional dual
lattice.

Going back to the partition function and sticking in the factors of 1 into the
bilinear part of the interaction, we replace the spatial J` by its Fourier transform J̃k,
and the spatial propagator (M)``′ by the diagonalized Fourier transformed (G̃0)k

JT · M · J =
∑
k,k′

(JT · ϕk)(ϕ†k · M · ϕk′)(ϕ
†

k′ · J) =
∑

k

J̃†k (G̃0)k J̃k . (A2.64)
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Figure A2.1: Symmetries of four disks on a square. A
fundamental domain indicated by the shaded wedge.
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A2.6 C4v factorization

If an N-disk arrangement has CN symmetry, and the disk visitation sequence is
given by disk labels {ε1ε2ε3 . . . }, only the relative increments ρi = εi+1 − εi mod N
matter. Symmetries under reflections across axes increase the group to CNv and
add relations between symbols: {εi} and {N − εi} differ only by a reflection. As
a consequence of this reflection increments become decrements until the next re-
flection and vice versa. Consider four equal disks placed on the vertices of a
square (figure A2.1). The symmetry group consists of the identity e, the two re-
flections σx, σy across x, y axes, the two diagonal reflections σ13, σ24, and the
three rotations C4, C2 and C3

4 by angles π/2, π and 3π/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labels εi ∈ {1, 2, 3, 4}
by relative increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflection; this new sym-
bol will be called 1. Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As an example, consider
the fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation sequence
1+12+13+21 · · · = 123, where the subscript indicates the increments (or decre-
ments) between neighboring symbols; the period of the cycle 112 is thus 3 in
both the fundamental domain and the full space. Similarly, the cycle 112 will be
mapped into 1+12−11−23−12+13+21 = 121323 (note that the fundamental domain
symbol 1 corresponds to a flip in orientation after the second and fifth symbols);
this time the period in the full space is twice that of the fundamental domain. In
particular, the fundamental domain fixed points correspond to the following 4-disk
cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2

Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in table A2.1.
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Table A2.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labeled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle. For
typographical convenience, the symbol 1 of sect. A2.6 has been replaced by 0, so that
the ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np. Orbit 2
is the sole boundary orbit, invariant both under a rotation by π and a reflection across a
diagonal. The two pairs of cycles marked by (a) and (b) are related by time reversal, but
cannot be mapped into each other by C4v transformations.

p̃ p h p̃
0 1 2 σx
1 1 2 3 4 C4
2 1 3 C2, σ13
01 12 14 σ24
02 12 43 σy
12 12 41 34 23 C3

4
001 121 232 343 414 C4
002 121 343 C2
011 121 434 σy
012 121 323 σ13
021 124 324 σ13
022 124 213 σx
112 123 e
122 124 231 342 413 C4

p̃ p hp̃
0001 1212 1414 σ24
0002 1212 4343 σy
0011 1212 3434 C2
0012 1212 4141 3434 2323 C3

4
0021 (a) 1213 4142 3431 2324 C3

4
0022 1213 e
0102 (a) 1214 2321 3432 4143 C4
0111 1214 3234 σ13
0112 (b) 1214 2123 σx
0121 (b) 1213 2124 σx
0122 1213 1413 σ24
0211 1243 2134 σx
0212 1243 1423 σ24
0221 1242 1424 σ24
0222 1242 4313 σy
1112 1234 2341 3412 4123 C4
1122 1231 3413 C2
1222 1242 4131 3424 2313 C3

4

This symbolic dynamics is closely related to the group-theoretic structure
of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements g1 = C, g2 = C2, g1 = σdiagC = σaxis,
where C is a rotation by π/2. In the 112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of table A2.1. Our
convention is to multiply group elements in the reverse order with respect to the
symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

The C4v group has four 1-dimensional representations, either symmetric (A1)
or antisymmetric (A2) under both types of reflections, or symmetric under one and
antisymmetric under the other (B1, B2), and a degenerate pair of 2-dimensional
representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4,C3

4 1 1 -1 -1 0
σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (25.20) we obtain:
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hp̃ A1 A2 B1 B2 E
e: (1 − t p̃)8 = (1 − t p̃) (1 − tp̃) (1 − tp̃) (1 − t p̃) (1 − tp̃)4

C2: (1 − t2
p̃)4 = (1 − t p̃) (1 − tp̃) (1 − tp̃) (1 − t p̃) (1 + tp̃)4

C4,C3
4: (1 − t4

p̃)2 = (1 − t p̃) (1 − tp̃) (1 + tp̃) (1 + t p̃) (1 + t2
p̃)2

σaxes: (1 − t2
p̃)4 = (1 − t p̃) (1 + tp̃) (1 − tp̃) (1 + t p̃) (1 − t2

p̃)2

σdiag: (1 − t2
p̃)4 = (1 − t p̃) (1 + tp̃) (1 + t p̃) (1 − t p̃) (1 − t2

p̃)2

The possible irreducible segment group elements hp̃ are listed in the first column;
σaxes denotes a reflection across either the x-axis or the y-axis, and σdiag denotes
a reflection across a diagonal (see figure A2.1). In addition, degenerate pairs
of boundary orbits can run along the symmetry lines in the full space, with the
fundamental domain group theory weights hp = (C2 + σx)/2 (axes) and hp =

(C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)(1 − 0tp̃)(1 + tp̃)2

diagonals: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0tp̃)(1 − 0t p̃)(1 − tp̃)(1 + tp̃)2(A2.65)

(we have assumed that t p̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits 13, 24
occur; they correspond to the 2 fixed point in the fundamental domain.

The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)

(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)

(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)

−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A2.66)

(for typographical convenience, 1 is replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the characters can be read off the symbol
strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) = (−1)n0+n1 , where n0 and
n1 are the number of times symbols 0, 1 appear in the p̃ symbol string. For B2 all
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tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)

(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)

(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)

+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A2.67)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (A2.65) the orbit t2 does not contribute to A2
and B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)

(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)

(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(A2.68)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)

(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)

(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(A2.69)

In the above we have assumed that t2 does not change sign under C4v reflections.
For the mixed-symmetry subspace E the curvature expansion is given by

1/ζE = 1 + t2 + (−t02 + t12) + (2t002 − t2t02 − 2t112 + t2t12)

+(2t0011 − 2t0022 + 2t2t002 − t01
2 − t02

2 + 2t1122 − 2t2t112

+t12
2 − t02t12) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t02t12

+2t002(−t02 + t12) − 2t112(−t02 + t12)) (A2.70)
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Figure A2.2: Symmetries of four disks on a rectangle.
A fundamental domain indicated by the shaded wedge.

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (18.46).
exercise 23.8

A2.7 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has C2v sym-
metry, see figure A2.2. C2v consists of {e, σx, σy,C2}, i.e., the reflections across
the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded back by a reflection
on that axis; with these symmetry operations g0 = σx and g1 = σy we associate
labels 1 and 0, respectively. Orbits going to the diagonally opposed disk cross the
boundaries of the fundamental domain twice; the product of these two reflections
is just C2 = σxσy, to which we assign the label 2. For example, a ternary string
0 0 1 0 2 0 1 . . . is converted into 12143123. . . , and the associated group-theory
weight is given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in table A2.2.
Note that already at length three there is a pair of cycles (012 = 143 and 021 = 142)
related by time reversal, but not by any C2v symmetries.

The above is the complete description of the symbolic dynamics for 4 suf-
ficiently separated equal disks placed at corners of a rectangle. However, if the
fundamental domain requires further partitioning, the ternary description is in-
sufficient. For example, in the stadium billiard fundamental domain one has to
distinguish between bounces off the straight and the curved sections of the bil-
liard wall; in that case five symbols suffice for constructing the covering symbolic
dynamics.

The group C2v has four 1-dimensional representations, distinguished by their
behavior under axis reflections. The A1 representation is symmetric with respect
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Table A2.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v transformation that
maps the end point of the p̃ cycle into an irreducible segment of the p cycle. The de-
generacy of the p cycle is mp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other by C2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given in
sect. A2.7, starting from disk 1.

p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2
01 14 32 C2
02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2
011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2
122 124 213 σx

p̃ p g
0001 1414 3232 C2
0002 1414 2323 σx
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2
0112 1434 2343 σx
0121 1431 2342 σx
0122 1431 3213 C2
0211 1421 2312 σx
0212 1421 3243 C2
0221 1424 3242 C2
0222 1424 2313 σx
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

to both reflections; the A2 representation is antisymmetric with respect to both.
The B1 and B2 representations are symmetric under one and antisymmetric under
the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1

C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (25.19), the contributions of peri-
odic orbits split as follows

gp̃ A1 A2 B1 B2
e: (1 − t p̃)4 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃)

C2: (1 − t2
p̃)2 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − tp̃)

σx: (1 − t2
p̃)2 = (1 − t p̃) (1 + tp̃) (1 − t p̃) (1 + tp̃)

σy: (1 − t2
p̃)2 = (1 − tp̃) (1 + tp̃) (1 + t p̃) (1 − tp̃)

Cycle expansions follow by substituting cycles and their group theory factors from
table A2.2. For A1 all characters are +1, and the corresponding cycle expansion
is given in (A2.66). Similarly, the totally antisymmetric subspace factorization A2
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is given by (A2.67), the B2 factorization of C4v. For B1 all tp with an odd total
number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)

(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)

(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)

−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A2.71)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)

(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)

(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)

+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A2.72)

Note that all of the above cycle expansions group long orbits together with their
pseudo-orbit shadows, so that the shadowing arguments for convergence still ap-
ply.

The topological polynomial factorizes as

1
ζA1

= 1 − 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1 + z,

consistent with the 4-disk factorization (18.46).

A2.8 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.17). For b , 0 the
Hénon map is reversible: the backward iteration of (3.18) is given by

xn−1 = −
1
b

(1 − ax2
n − xn+1) . (A2.73)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the param-
eter plane, together with x → −x/b in the coordinate plane, and there is no need
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to explore the (a, b) parameter plane outside the strip b ∈ {−1, 1}. For b = −1 the
map is orientation and area preserving ,

xn−1 = 1 − ax2
n − xn+1 , (A2.74)

the backward and the forward iteration are the same, and the non–wandering set
is symmetric across the xn+1 = xn diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the orientation reversing b = 1
case we have

xn−1 = 1 − ax2
n + xn+1 , (A2.75)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal.

Commentary

Remark A2.1. C4v labeling conventions While there is a variety of labeling conven-
tions [2, 3] for the reduced C4v dynamics, we prefer the one introduced here because of
its close relation to the group-theoretic structure of the dynamics: the global 4-disk tra-
jectory can be generated by mapping the fundamental domain trajectories onto the full
4-disk space by the accumulated product of the C4v group elements.

Remark A2.2. C2v symmetry C2v is the symmetry of several systems studied in the
literature, such as the stadium billiard [1], and the 2-dimensional anisotropic Kepler po-
tential [4].
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Exercises

A2.1. Am I a group? Show that multiplication table

e a b c d f
e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix A2.1.)

From W.G. Harter [5]

A2.2. Three coupled pendulums with a C2 symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same mass m and length l, the one midway of same
length but different mass M, with the tip coupled to the
tips of the outer ones with springs of stiffness k. Assume
displacements are small, xi/l � 1.
(a) Show that the acceleration matrix ẍ = −a x is ẍ1

ẍ2
ẍ3

 = −

 a + b −a 0
−c 2c + b −c
0 −a a + b


 x1

x2
x3

 ,
where a = k/ml, c = k/Ml and b = g/l.
(b) Check that [a,R] = 0, i.e., that the dynamics is
invariant under C2 = {e,R}, where R interchanges the
outer pendulums,

R =

 0 0 1
0 1 0
1 0 0

 .
(c) Construct the corresponding projection operators P+

and P−, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue
(ω(−))2 = a + b, and a 2-dimensional subspace, with
acceleration matrix (trust your own algebra, if it strays
from what is stated here)

a(+) =

[
a + b −

√
2a

−
√

2c c + b

]
.

The exercise is simple enough that you can do it with-
out using the symmetry, so: construct P+,P− first, use
them to reduce a to irreps, then proceed with computing
remaining eigenvalues of a.
(d) Does anything interesting happen if M = m?

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimension d gets reduced to a set of subspaces
whose dimensions d(α) satisfy

∑
d(α) = d. Beyond that,

love many, trust few, and paddle your own canoe.

From W.G. Harter [5]

A2.3. Lorenz system in polar coordinates: dynamics.
(continuation of exercise 11.4)

1. Show that (11.13) has two equilibria:

(r0, z0) = (0, 0) , θ0 undefined
(r1, θ1, z1) = (

√
2b(ρ − 1), π/4, ρ − 1) .(A2.76)

2. Verify numerically that the eigenvalues and eigen-
vectors of the two equilibria are (we list here
the precise numbers to help you check your pro-
grams):
EQ1 = (0, 12, 27) equilibrium: (and its C1/2-
rotation EQ2) has one stable real eigenvalue
λ(1) = −13.854578,
and the unstable complex conjugate pair
λ(2,3) = µ(2) ± iω(2) = 0.093956 ± i10.194505.
The unstable eigenplane is defined by eigen-
vectors
Re e(2) = (−0.4955,−0.2010,−0.8450)
Im e(2) = (0.5325,−0.8464, 0)
with period T = 2π/ω(2) = 0.6163306,
radial expansion multiplier
Λr = exp(2πµ(2)/ω(2)) = 1.059617,
and the contracting multiplier
Λc = exp(2πµ(1)/ω(2)) ≈ 1.95686 × 10−4

along the stable eigenvector of EQ1,
e(3) = (0.8557,−0.3298,−0.3988).
EQ0 = (0, 0, 0) equilibrium: The stable eigen-
vector e(1) = (0, 0, 1) of EQ0, has contraction rate
λ(2) = −b = −2.666 . . . .
The other stable eigenvector is
e(2) = (−0.244001,−0.969775, 0), with contract-
ing eigenvalue
λ(2) = −22.8277. The unstable eigenvector
e(3) = (−0.653049, 0.757316, 0) has eigenvalue
λ(3) = 11.8277.

3. Plot the Lorenz strange attractor both in the
Lorenz coordinates figure 2.5, and in the doubled-
polar angle coordinates (11.11) for the Lorenz pa-
rameter values σ = 10, b = 8/3, ρ = 28. Topolog-
ically, does it resemble the Lorenz butterfly, the
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Rössler attractor, or neither? The Poincaré sec-
tion of the Lorenz flow fixed by the z-axis and the
equilibrium in the doubled polar angle represen-
tation, and the corresponding Poincaré return map
(sn, sn + 1) are plotted in figure 14.8.

4. Construct the Poincaré return map (sn, sn+1),

−40 −20 0 20

−40

−20

0

20

S
n

S
n+

1

 

 

where s is arc-length measured along the unstable
manifold of EQ0, lower Poincaré section of fig-
ure 14.8 (b). Elucidate its relation to the Poincaré
return map of figure 14.9. (plot by J. Halcrow)

5. Show that if a periodic orbit of the polar represen-
tation Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How
do the Floquet multipliers of relative periodic or-
bits of the representations relate to each other?

6. What does the volume contraction formula (4.42)
look like now? Interpret.

A2.4. Laplacian is a non-local operator.
While the Laplacian is a simple tri-diagonal difference
operator (A2.42), its inverse (the “free” propagator of
statistical mechanics and quantum field theory) is a
messier object. A way to compute is to start expanding
propagator as a power series in the Laplacian

1
m21 − �

=
1

m2

∞∑
n=0

1
m2n�

n . (A2.77)

As � is a finite matrix, the expansion is convergent for
sufficiently large m2. To get a feeling for what is in-

volved in evaluating such series, show that �2 is:

�2 =
1
a4



6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6


.

(A2.78)

What �3, �4, · · · contributions look like is now clear; as
we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while the inverse propa-
gator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer-
cise A2.5.

A2.5. Lattice Laplacian diagonalized. Insert the iden-
tity

∑
P(k) = 1 wherever you profitably can, and use the

eigenvalue equation (A2.55) to convert shift σ matrices
into scalars. If M commutes with σ, then (ϕ†k ·M ·ϕk′ ) =

M̃(k)δkk′ , and the matrix M acts as a multiplication by
the scalar M̃(k) on the kth subspace. Show that for the
1-dimensional version of the lattice Laplacian (A2.42)
the projection on the kth subspace is

(ϕ†k · � · ϕk′ ) =
2
a2

(
cos

(
2π
N

k
)
− 1

)
δkk′ . (A2.79)

In the kth subspace the propagator is simply a number,
and, in contrast to the mess generated by (A2.77), there
is nothing to evaluating:

ϕ†k ·
1

m21 − �
· ϕk′ =

δkk′

m2 − 2
(ma)2 (cos 2πk/N − 1)

,

(A2.80)

where k is a site in the N-dimensional dual lattice, and
a = L/N is the lattice spacing.
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