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Appendix A

Linear Algebra Review

In physics we often have to work with infinite dimensional vector spaces.
Navigating these vasty deeps is much easier if you have a sound grasp of the
theory of finite dimensional spaces. Most physics students have studied this
as undergraduates, but not always in a systematic way. In this appendix
we gather together and review those parts of linear algebra that we will find
useful in the main text.

A.1 Vector space

A.1.1 Axioms

A vector space V over a field F is a set equipped with two operations: a
binary operation called vector addition which assigns to each pair of elements
x, y ∈ V a third element denoted by x + y, and scalar multiplication which
assigns to an element x ∈ V and λ ∈ F a new element λx ∈ V . There is also
a distinguished element 0 ∈ V such that the following axioms are obeyed:1

1) Vector addition is commutative: x + y = y + x.
2) Vector addition is associative: (x + y) + z = x + (y + z).
3) Additive identity: 0 + x = x.
4) Existence of an additive inverse: for any x ∈ V , there is an element

(−x) ∈ V , such that x + (−x) = 0.
5) Scalar distributive law i) λ(x + y) = λx + λy.
6) Scalar distributive law ii) (λ+ µ)x = λx + µx.

1In this list 1, λ, µ,∈ F and x, y,0 ∈ V .
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836 APPENDIX A. LINEAR ALGEBRA REVIEW

7) Scalar multiplicatiion is associative: (λµ)x = λ(µx).
8) Multiplicative identity: 1x = x.

The elements of V are called vectors. We will only consider vector spaces
over the field of the real numbers, F = R, or the complex numbers, F = C.

You have no doubt been working with vectors for years, and are saying to
yourself “I know this stuff.” Perhaps so, but to see if you really understand
these axioms try the following exercise. Its value lies not so much in the
solution of its parts, which are easy, as in appreciating that these commonly
used properties both can and need to be proved from the axioms. (Hint:
work the problems in the order given; the later parts depend on the earlier.)

Exercise A.1: Use the axioms to show that:

i) If x + 0̃ = x, then 0̃ = 0.
ii) We have 0x = 0 for any x ∈ V . Here 0 is the additive identity in F.
iii) If x + y = 0, then y = −x. Thus the additive inverse is unique.
iv) Given x, y in V , there is a unique z such that x+z = y, to whit z = x−y.
v) λ0 = 0 for any λ ∈ F.
vi) If λx = 0, then either x = 0 or λ = 0.
vii) (−1)x = −x.

A.1.2 Bases and components

Let V be a vector space over F. For the moment, this space has no additional
structure beyond that of the previous section — no inner product and so no
notion of what it means for two vectors to be orthogonal. There is still much
that can be done, though. Here are the most basic concepts and properties
that need to be understand:

i) A set of vectors {e1, e2, . . . , en} is linearly dependent if there exist λµ ∈
F, not all zero, such that

λ1e1 + λ2e2 + · · ·+ λnen = 0. (A.1)

ii) If it is not linearly dependent, a set of vectors {e1, e2, . . . , en} is linearly
independent . For a linearly independent set, a relation

λ1e1 + λ2e2 + · · ·+ λnen = 0 (A.2)

can hold only if all the λµ are zero.
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iii) A set of vectors {e1, e2, . . . , en} is said to span V if for any x ∈ V there
are numbers xµ such that x can be written (not necessarily uniquely)
as

x = x1e1 + x2e2 + · · ·+ xnen. (A.3)

A vector space is finite dimensional if a finite spanning set exists.
iv) A set of vectors {e1, e2, . . . , en} is a basis if it is a maximal linearly

independent set (i.e. introducing any additional vector makes the set
linearly dependent). An alternative definition declares a basis to be a
minimal spanning set (i.e. deleting any of the ei destroys the spanning
property). Exercise: Show that these two definitions are equivalent.

v) If {e1, e2, . . . , en} is a basis then any x ∈ V can be written

x = x1e1 + x2e2 + . . . xnen, (A.4)

where the xµ, the components of the vector with respect to this basis,
are unique in that two vectors coincide if and only if they have the
same components.

vi) Fundamental Theorem: If the sets {e1, e2, . . . , en} and {f1, f2, . . . , fm}
are both bases for the space V then m = n. This invariant integer is
the dimension, dim (V ), of the space. For a proof (not difficult) see
a mathematics text such as Birkhoff and McLane’s Survey of Modern
Algebra, or Halmos’ Finite Dimensional Vector Spaces.

Suppose that {e1, e2, . . . , en} and {e′
1, e

′
2, . . . , e

′
n} are both bases, and that

eν = aµνe
′
µ. (A.5)

Since {e1, e2, . . . , en} is a basis, the e′
ν can also be uniquely expressed in terms

of the eµ, and so the numbers aµν constitute an invertible matrix. (Note that
we are, as usual, using the Einstein summation convention that repeated
indices are to be summed over.) The components x′µ of x in the new basis
are then found by comparing the coefficients of e′

µ in

x′µe′
µ = x = xνeν = xν

(
aµνe

′
µ

)
= (xνaµν ) e′

µ (A.6)

to be x′µ = aµνx
ν , or equivalently, xν = (a−1)νµ x

′µ. Note how the eµ and the
xµ transform in “opposite” directions. The components xµ are therefore said
to transform contravariantly .
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A.2 Linear maps

Let V and W be vector spaces having dimensions n and m respectively. A
linear map, or linear operator , A is a function A : V → W with the property
that

A(λx + µy) = λA(x) + µA(y). (A.7)

A.2.1 Matrices

The linear map A is an object that exists independently of any basis. Given
bases {eµ} for V and {fν} for W , however, the map may be represented by
an m-by-n matrix . We obtain this matrix

A =




a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
...

. . .
...

am1 am2 . . . amn


 , (A.8)

having entries aνµ, by looking at the action of A on the basis elements:

A(eµ) = fνa
ν
µ . (A.9)

To make the right-hand-side of (A.9) look like a matrix product, where we
sum over adjacent indices, the array aνµ has been written to the right of the
basis vector.2 The map y = A(x) is therefore

y ≡ yνfν = A(x) = A(xµeµ) = xµA(eµ) = xµ(fνa
ν
µ) = (aνµx

µ)fν, (A.10)

whence, comparing coefficients of fν, we have

yν = aνµx
µ. (A.11)

The action of the linear map on components is therefore given by the usual
matrix multiplication from the left : y = Ax, or more explicitly




y1

y2

...
ym


 =




a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
...

. . .
...

am1 am2 . . . amn







x1

x2

...
xn


 . (A.12)

2You have probably seen this “backward” action before in quantum mechanics. If we
use Dirac notation |n〉 for an orthonormal basis, and insert a complete set of states, |m〉〈m|,
then A|n〉 = |m〉〈m|A|n〉. The matrix 〈m|A|n〉 representing the operator A operating on
a vector from the left thus automatically appears to the right of the basis vectors used to
expand the result.



A.2. LINEAR MAPS 839

The identity map I : V → V is represented by the n-by-n matrix

In =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



, (A.13)

which has the same entries in any basis.

Exercise A.2: Let U , V , W be vector spaces, and A : V → W , B : U → V
linear maps which are represented by the matrices A with entries aµν and B

with entries bµν , respectively. Use the action of the maps on basis elements
to show that the map AB : U →W is represented by the matrix product AB

whose entries are aµλb
λ
ν .

A.2.2 Range-nullspace theorem

Given a linear map A : V →W , we can define two important subspaces:
i) The kernel or nullspace is defined by

KerA = {x ∈ V : A(x) = 0}. (A.14)

It is a subspace of V .
ii) The range or image space is defined by

ImA = {y ∈ W : y = A(x),x ∈ V }. (A.15)

It is a subspace of the target space W .
The key result linking these spaces is the range-nullspace theorem which
states that

dim (KerA) + dim (ImA) = dim V

It is proved by taking a basis nµ for KerA and extending it to a basis for the
whole of V by appending (dimV − dim (KerA)) extra vectors eν. It is easy
to see that the vectors A(eν) are linearly independent and span ImA ⊆ W .
Note that this result is meaningless unless V is finite dimensional.

The number dim (ImA) is the number of linearly independent columns
in the matrix, and is often called the (column) rank of the matrix.
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A.2.3 The dual space

Associated with the vector space V is its dual space, V ∗, which is the set of
linear maps f : V → F. In other words the set of linear functions f( ) that
take in a vector and return a number. These functions are often also called
covectors. (Mathematicians place the prefix co- in front of the name of a
mathematical object to indicate a dual class of objects, consisting of the set
of structure-preserving maps of the original objects into the field over which
they are defined.)

Using linearity we have

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (A.16)

The set of numbers fµ = f(eµ) are the components of the covector f ∈ V ∗.
If we change basis eν = aµνe

′
µ then

fν = f(eν) = f(aµνe
′
µ) = aµνf(e′

µ) = aµνf
′
µ. (A.17)

Thus fν = aµνf
′
µ and the fµ components transform in the same manner as the

basis. They are therefore said to transform covariantly .
Given a basis eµ of V , we can define a dual basis for V ∗ as the set of

covectors e∗µ ∈ V ∗ such that

e∗µ(eν) = δµν . (A.18)

It should be clear that this is a basis for V ∗, and that f can be expanded

f = fµe
∗µ. (A.19)

Although the spaces V and V ∗ have the same dimension, and are therefore
isomorphic, there is no natural map between them. The assignment eµ 7→ e∗µ

is unnatural because it depends on the choice of basis.
One way of driving home the distinction between V and V ∗ is to consider

the space V of fruit orders at a grocers. Assume that the grocer stocks only
apples, oranges and pears. The elements of V are then vectors such as

x = 3kg apples + 4.5kg oranges + 2kg pears. (A.20)

Take V ∗ to be the space of possible price lists, an example element being

f = (£3.00/kg) apples∗ + (£2.00/kg) oranges∗ + (£1.50/kg)pears∗.
(A.21)
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The evaluation of f on x

f(x) = 3× £3.00 + 4.5× £2.00 + 2× £1.50 = £21.00, (A.22)

then returns the total cost of the order. You should have no difficulty in
distinguishing between a price list and box of fruit!

We may consider the original vector space V to be the dual space of V ∗

since, given vectors in x ∈ V and f ∈ V ∗, we naturally define x(f) to be
f(x). Thus (V ∗)∗ = V . Instead of giving one space priority as being the set
of linear functions on the other, we can treat V and V ∗ on an equal footing.
We then speak of the pairing of x ∈ V with f ∈ V ∗ to get a number in the
field. It is then common to use the notation (f,x) to mean either of f(x) or
x(f). Warning: despite the similarity of the notation, do not fall into the
trap of thinking of the pairing (f,x) as an inner product (see next section) of
f with x. The two objects being paired live in different spaces. In an inner
product, the vectors being multiplied live in the same space.

A.3 Inner-product spaces

Some vector spaces V come equipped with an inner (or scalar) product.
This additional structure allows us to relate V and V ∗.

A.3.1 Inner products

We will use the symbol 〈x,y〉 to denote an inner product . An inner (or
scalar) product is a conjugate-symmetric, sesquilinear, non-degenerate map
V × V → F. In this string of jargon, the phrase conjugate symmetric means
that

〈x,y〉 = 〈y,x〉∗, (A.23)

where the “∗” denotes complex conjugation, and sesquilinear3 means

〈x, λy + µz〉 = λ〈x,y〉+ µ〈x, z〉, (A.24)

〈λx + µy, z〉 = λ∗〈x, z〉+ µ∗〈y, z〉. (A.25)

The product is therefore linear in the second slot, but anti-linear in the
first. When our field is the real numbers R then the complex conjugation is

3Sesqui is a Latin prefix meaning “one-and-a-half”.
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redundant and the product will be symmetric

〈x,y〉 = 〈y,x〉, (A.26)

and bilinear

〈x, λy + µz〉 = λ〈x,y)〉+ µ〈x, z〉, (A.27)

〈λx + µy, z〉 = λ〈x, z〉+ µ〈y, z〉. (A.28)

The term non-degenerate means that if 〈x,y〉 = 0 for all y, then x = 0.
Many inner products satisfy the stronger condition of being positive definite.
This means that 〈x,x〉 > 0 unless x = 0, in which case 〈x,x〉 = 0. Positive
definiteness implies non-degeneracy, but not vice-versa.

Given a basis eµ, we can form the pairwise products

〈eµ, eν〉 = gµν . (A.29)

If the array of numbers gµν constituting the components of the metric tensor
turns out to be gµν = δµν , then we say that the basis is orthonormal with
respect to the inner product. We will not assume orthonormality without
specifically saying so. The non-degeneracy of the inner product guarantees
the existence of a matrix gµν which is the inverse of gµν, i.e. gµνg

νλ = δλµ.
If we take our field to be the real numbers R then the additional structure

provided by a non-degenerate inner product allows us to identify V with V ∗.
For any f ∈ V ∗ we can find a vector f ∈ V such that

f(x) = 〈f ,x〉. (A.30)

In components, we solve the equation

fµ = gµνf
ν (A.31)

for f ν. We find f ν = gνµfµ. Usually, we simply identify f with f , and hence
V with V ∗. We say that the covariant components fµ are related to the
contravariant components fµ by raising

fµ = gµνfν, (A.32)

or lowering
fµ = gµνf

ν, (A.33)

the indices using the metric tensor. Obviously, this identification depends
crucially on the inner product; a different inner product would, in general,
identify an f ∈ V ∗ with a completely different f ∈ V .
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A.3.2 Euclidean vectors

Consider Rn equipped with its Euclidean metric and associated “dot” inner
product. Given a vector x and a basis eµ with gµν = eµ ·eν, we can define two
sets of components for the same vector. Firstly the coefficients xµ appearing
in the basis expansion

x = xµeµ,

and secondly the “components”

xµ = x · eµ = gµνx
ν,

of x along the basis vectors. The xµ are obtained from the xµ by the same
“lowering” operation as before, and so xµ and xµ are naturally referred to
as the contravariant and covariant components, respectively, of the vector x.
When the eµ constitute an orthonormal basis, then gµν = δµν and the two
sets of components are numerically coincident.

A.3.3 Bra and ket vectors

When our vector space is over the field of complex numbers, the anti-linearity
of the first slot of the inner product means we can no longer make a simple
identification of V with V ∗. Instead there is an anti-linear corresponence
between the two spaces. The vector x ∈ V is mapped to 〈x, 〉 which, since
it returns a number when a vector is inserted into its vacant slot, is an element
of V ∗. This mapping is anti-linear because

λx + µy 7→ 〈λx + µy, 〉 = λ∗〈x, 〉+ µ∗〈y, 〉. (A.34)

This antilinear map is probably familiar to you from quantum mechanics,
where V is the space of Dirac’s “ket” vectors |ψ〉 and V ∗ the space of
“bra” vectors 〈ψ|. The symbol, here ψ, in each of these objects is a label
distinguishing one state-vector from another. We often use the eigenvalues
of some complete set set of commuting operators. To each vector |ψ〉 we use
the (. . .)† map to assign it a dual vector

|ψ〉 7→ |ψ〉† ≡ 〈ψ|

having the same labels. The dagger map is defined to be antilinear

(λ|ψ〉+ µ|χ〉)† = λ∗〈ψ|+ µ∗〈χ|, (A.35)
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and Dirac denoted the number resulting from the pairing of the covector 〈ψ|
with the vector |χ〉 by the “bra-c-ket” symbol 〈ψ|χ〉:

〈ψ|χ〉 def
= (〈ψ|, |χ〉). (A.36)

We can regard the dagger map as either determining the inner-product on V
via

〈|ψ〉, |χ〉〉 def
= (|ψ〉†, |χ〉) = (〈ψ|, |χ〉) ≡ 〈ψ|χ〉, (A.37)

or being determined by it as

|ψ〉† def
= 〈|ψ〉, 〉 ≡ 〈ψ|. (A.38)

When we represent our vectors by their components with respect to an
orthonormal basis, the dagger map is the familiar operation of taking the
conjugate transpose,




x1

x2
...
xn


 7→




x1

x2
...
xn




†

= (x∗1, x
∗
2, . . . , x

∗
n) (A.39)

but this is not true in general. In a non-orthogonal basis the column vector
with components xµ is mapped to the row vector with components (x†)µ =
(xν)∗gνµ.

Much of Dirac notation tacitly assumes an orthonormal basis. For exam-
ple, in the expansion

|ψ〉 =
∑

n

|n〉〈n|ψ〉 (A.40)

the expansion coefficients 〈n|ψ〉 should be the contravariant components of
|ψ〉, but the 〈n|ψ〉 have been obtained from the inner product, and so are in
fact its covariant components. The expansion (A.40) is therefore valid only
when the |n〉 constitute an orthonormal basis. This will always be the case
when the labels on the states show them to be the eigenvectors of a complete
commuting set of observables, but sometimes, for example, we may use the
integer “n” to refer to an orbital centered on a particular atom in a crystal,
and then 〈n|m〉 6= δmn. When using such a non-orthonormal basis it is safer
not to use Dirac notation.
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Conjugate operator

A linear map A : V → W automatically induces a map A∗ : W ∗ → V ∗.
Given f ∈ W ∗ we can evaluate f(A(x)) for any x in V , and so f(A( )) is an
element of V ∗ that we may denote by A∗(f). Thus,

A∗(f)(x) = f(A(x)). (A.41)

Functional analysts (people who spend their working day in Banach space)
call A∗ the conjugate of A. The word “conjugate” and the symbol A∗ is
rather unfortunate as it has the potential for generating confusion4 — not
least because the (. . .)∗ map is linear . No complex conjugation is involved.
Thus

(λA+ µB)∗ = λA∗ + µB∗. (A.42)

Dirac deftly sidesteps this notational problem by writing 〈ψ|A for the
action of the conjugate of the operator A : V → V on the bra vector 〈ψ| ∈ V ∗.
After setting f → 〈ψ| and x→ |χ〉, equation (A.41) therefore reads

(〈ψ|A) |χ〉 = 〈ψ| (A|χ〉) . (A.43)

This shows that it does not matter where we place the parentheses, so Dirac
simply drops them and uses one symbol 〈ψ|A|χ〉 to represent both sides
of (A.43). Dirac notation thus avoids the non-complex-conjugating “∗” by
suppressing the distinction between an operator and its conjugate. If, there-
fore, for some reason we need to make the distinction, we cannnot use Dirac
notation.

Exercise A.3: If A : V → V and B : V → V show that (AB)∗ = B∗A∗.

Exercise A.4: How does the reversal of the operator order in the previous
exercise manifest itself in Dirac notation?

Exercise A.5: Show that if the linear operator A is, in a basis eµ, represented
by the matrix A, then the conjugate operator A∗ is represented in the dual
basis e∗µ by the transposed matrix AT .

4The terms dual , transpose, or adjoint are sometimes used in place of “conjugate.”
Each of these words brings its own capacity for confusion.
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A.3.4 Adjoint operator

The “conjugate” operator of the previous section does not require an inner
product for its definition, and is a map from V ∗ to V ∗. When we do have an
inner product, however, we can use it to define a different operator “conju-
gate” to A that, like A itself, is a map from V to V . This new conjugate is
called the adjoint or the Hermitian conjugate of A. To construct it, we first
remind ourselves that for any linear map f : V → C, there is a vector f ∈ V
such that f(x) = 〈f ,x〉. (To find it we simply solve fν = (fµ)∗gµν for fµ.)
We next observe that x 7→ 〈y, Ax〉 is such a linear map, and so there is a z
such that 〈y, Ax〉 = 〈z,x〉. It should be clear that z depends linearly on y,
so we may define the adjoint linear map, A†, by setting A†y = z. This gives
us the identity

〈y, Ax〉 = 〈A†y,x〉
The correspondence A 7→ A† is anti-linear

(λA+ µB)† = λ∗A† + µ∗B†. (A.44)

The adjoint of A depends on the inner product being used to define it. Dif-
ferent inner products give different A†’s.

In the particular case that our chosen basis eµ is orthonormal with respect
to the inner product, i.e.

〈eµ, eν〉 = δmuν , (A.45)

then the Hermitian conjugate A† of the operator A is represented by the
Hermitian conjugate matrix A† which is obtained from the matrix A by
interchanging rows and columns and complex conjugating the entries.

Exercise A.6: Show that (AB)† = B†A†.

Exercise A.7: When the basis is not orthonormal, show that

(A†)ρσ = (gσµA
µ
νg
νρ)∗ . (A.46)

A.4 Sums and differences of vector spaces

A.4.1 Direct sums

Suppose that U and V are vector spaces. We define their direct sum U ⊕ V
to be the vector space of ordered pairs (u,v) with

λ(u1,v1) + µ(u2,v2) = (λu1 + µu2, λv1 + µv2). (A.47)
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The set of vectors {(u, 0)} ⊂ U ⊕V forms a copy of U , and {(0,v)} ⊂ U ⊕V
a copy of V . Thus U and V may be regarded as subspaces of U ⊕ V .

If U and V are any pair of subspaces of W , we can form the space U +V
consisting of all elements of W that can be written as u+ v with u ∈ U and
v ∈ V . The decomposition x = u + v of an element x ∈ U + V into parts in
U and V will be unique (in that u1 + v1 = u2 + v2 implies that u1 = u2 and
v1 = v2) if and only if U ∩ V = {0} where {0} is the subspace containing
only the zero vector. In this case U + V can be identified with U ⊕ V .

If U is a subspace of W then we can seek a complementary space V such
that W = U ⊕ V , or, equivalently, W = U + V with U ∩ V = {0}. Such
complementary spaces are not unique. Consider R3, for example, with U
being the vectors in the x, y plane. If e is any vector that does not lie in
this plane then the one-dimensional space spanned by e is a complementary
space for U .

A.4.2 Quotient spaces

We have seen that if U is a subspace of W there are many complementary
subspaces V such that W = U ⊕ V . We can however define a unique space
that we might denote by W − U and refer to as the difference of the two
spaces. It is more common, however, to see this space written as W/U and
referred to as the quotient of W modulo U . This quotient space is the vector
space of equivalence classes of vectors, where we do not distinguish between
two vectors in W if their difference lies in U . In other words

x = y (mod U) ⇔ x− y ∈ U. (A.48)

The collection of elements in W that are equivalent to x (mod U) composes
a coset, written x +U , a set whose elements are x + u where u is any vector
in U . These cosets are the elements of W/U .

When we have a linear map A : U → V , the quotient space V/ImA is
often called the co-kernel of A.

Given a positive-definite inner product, we can define a unique orthogonal
complement of U ⊂ W . We define U⊥ to be the set

U⊥ = {x ∈ W : 〈x,y〉 = 0, ∀y ∈ U}. (A.49)

It is easy to see that this is a linear subspace and that U ⊕ U⊥ = W . For
finite dimensional spaces
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dimW/U = dimU⊥ = dimW − dimU

and (U⊥)⊥ = U . For infinite dimensional spaces we only have (U⊥)⊥ ⊇ U .
(Be careful, however. If the inner product is not positive definite, U and U⊥

may have non-zero vectors in common.)
Although they have the same dimensions, do not confuse W/U with U⊥,

and in particular do not use the phrase orthogonal complement without spec-
ifying an inner product.

A practical example of a quotient space occurs in digital imaging. A
colour camera reduces the infinite-dimensional space L of coloured light inci-
dent on each pixel to three numbers, R, G and B, these obtained by pairing
the spectral intensity with the frequency response (an element of L∗) of the
red, green and blue detectors at that point. The space of distingushable
colours is therefore only three dimensional. Many different incident spectra
will give the same output RGB signal, and are therefore equivalent as far
as the camera is concerned. In the colour industry these equivalent colours
are called metamers. Equivalent colours differ by spectral intensities that lie
in the space B of metameric black . There is no inner product here, so it is
meaningless to think of the space of distinguishable colours as being B⊥. It
is, however, precisely what we mean by L/B.

A.4.3 Projection-operator decompositions

An operator P : V → V that obeys P 2 = P is called a projection operator .
It projects a vector x ∈ V to Px ∈ ImP along KerP — in the sense of
casting a shadow onto ImP with the light coming from the direction KerP .
In other words all vectors lying in KerP are killed, whilst any vector already
in ImP is left alone by P . (If x ∈ ImP then x = Py for some y ∈ V , and
Px = P 2y = Py = x.) The only vector common to both KerP and ImP is
0, and so

V = KerP ⊕ ImP. (A.50)

A set of projection operators Pi that are “orthogonal”

PiPj = δijPi, (A.51)

and sum to the identity operator

∑

i

Pi = I, (A.52)
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is called a resolution of the identity . The resulting equation

x =
∑

i

Pix (A.53)

decomposes x uniquely into a sum of terms Pix ∈ ImPi and so decomposes
V into a direct sum of subspaces Vi ≡ ImPi:

V =
⊕

i

Vi. (A.54)

Exercise A.8: Let P1 be a projection operator. Show that P2 = I − P1 is
also a projection operator and P1P2 = 0. Show also that ImP2 = KerP1 and
KerP2 = ImP1.

A.5 Inhomogeneous linear equations

Suppose we wish to solve the system of linear equations

a11y1 + a12y2 + · · ·+ a1nyn = b1

a21y1 + a22y2 + · · ·+ a2nyn = b2
...

...

am1y1 + am2y2 + · · ·+ amnyn = bm

or, in matrix notation,
Ay = b, (A.55)

where A is the m-by-n matrix with entries aij. Faced with such a problem,
we should start by asking ourselves the questions:

i) Does a solution exist?
ii) If a solution does exist, is it unique?

These issues are best addressed by considering the matrix A as a linear
operator A : V → W , where V is n dimensional and W is m dimensional.
The natural language is then that of the range and nullspaces of A. There
is no solution to the equation Ay = b when Im A is not the whole of W
and b does not lie in Im A. Similarly, the solution will not be unique if
there are distinct vectors x1, x2 such that Ax1 = Ax2. This means that
A(x1 − x2) = 0, or (x1 − x2) ∈ KerA. These situations are linked, as we
have seen, by the range null-space theorem:

dim (KerA) + dim (ImA) = dimV. (A.56)
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Thus, if m > n there are bound to be some vectors b for which no solution
exists. When m < n the solution cannot be unique.

A.5.1 Rank and index

Suppose V ≡ W (so m = n and the matrix is square) and we chose an inner
product, 〈x,y〉, on V . Then x ∈ KerA implies that, for all y

0 = 〈y, Ax〉 = 〈A†y,x〉, (A.57)

or that x is perpendicular to the range of A†. Conversely, let x be perpen-
dicular to the range of A†; then

〈x, A†y〉 = 0, ∀y ∈ V, (A.58)

which means that
〈Ax,y〉 = 0, ∀y ∈ V, (A.59)

and, by the non-degeneracy of the inner product, this means that Ax = 0.
The net result is that

KerA = (ImA†)⊥. (A.60)

Similarly
KerA† = (ImA)⊥. (A.61)

Now

dim (KerA) + dim (ImA) = dimV,

dim (KerA†) + dim (ImA†) = dimV, (A.62)

but

dim (KerA) = dim (ImA†)⊥

= dim V − dim (ImA†)

= dim (KerA†).

Thus, for finite-dimensional square matrices, we have

dim (KerA) = dim (KerA†)

In particular, the row and column rank of a square matrix coincide.
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Example: Consider the matrix

A =




1 2 3
1 1 1
2 3 4




Clearly, the number of linearly independent rows is two, since the third row
is the sum of the other two. The number of linearly independent columns is
also two — although less obviously so — because

−




1
1
2


+ 2




2
1
3


 =




3
1
4


 .

Warning: The equality dim (KerA) = dim (KerA†), need not hold in infi-
nite dimensional spaces. Consider the space with basis e1, e2, e3, . . . indexed
by the positive integers. Define Ae1 = e2, Ae2 = e3, and so on. This op-
erator has dim (KerA) = 0. The adjoint with respect to the natural inner
product has A†e1 = 0, A†e2 = e1, A

†e3 = e2. Thus KerA† = {e1}, and
dim (KerA†) = 1. The difference dim (KerA)−dim (KerA†) is called the in-
dex of the operator. The index of an operator is often related to topological
properties of the space on which it acts, and in this way appears in physics
as the origin of anomalies in quantum field theory.

A.5.2 Fredholm alternative

The results of the previous section can be summarized as saying that the
Fredholm Alternative holds for finite square matrices. The Fredholm Alter-
native is the set of statements

I. Either
i) Ax = b has a unique solution,

or
ii) Ax = 0 has a solution.

II. If Ax = 0 has n linearly independent solutions, then so does A†x = 0.
III. If alternative ii) holds, then Ax = b has no solution unless b is orthog-

onal to all solutions of A†x = 0.
It should be obvious that this is a recasting of the statements that

dim (KerA) = dim (KerA†),
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and

(KerA†)⊥ = ImA. (A.63)

Notice that finite-dimensionality is essential here. Neither of these statement
is guaranteed to be true in infinite dimensional spaces.

A.6 Determinants

A.6.1 Skew-symmetric n-linear forms

You will be familiar with the elementary definition of the determinant of an
n-by-n matrix A having entries aij:

detA ≡

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣

def
= εi1i2...ina1i1a2i2 . . . anin. (A.64)

Here, εi1i2...in is the Levi-Civita symbol, which is skew-symmetric in all its
indices and ε12...n = 1. From this definition we see that the determinant
changes sign if any pair of its rows are interchanged, and that it is linear in
each row. In other words

∣∣∣∣∣∣∣∣

λa11 + µb11 λa12 + µb12 . . . λa1n + µb1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣

= λ

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣
+ µ

∣∣∣∣∣∣∣∣

b11 b12 . . . b1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣
.

If we consider each row as being the components of a vector in an n-dimensional
vector space V , we may regard the determinant as being a skew-symmetric
n-linear form, i.e. a map

ω :

n factors︷ ︸︸ ︷
V × V × . . . V → F (A.65)
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which is linear in each slot,

ω(λa + µb, c2, . . . , cn) = λω(a, c2, . . . , cn) + µω(b, c2, . . . , cn), (A.66)

and changes sign when any two arguments are interchanged,

ω(. . . , ai, . . . , aj, . . .) = −ω(. . . , aj, . . . , ai, . . .). (A.67)

We will denote the space of skew-symmetric n-linear forms on V by the
symbol

∧n(V ∗). Let ω be an arbitrary skew-symmetric n-linear form in∧n(V ∗), and let {e1, e2, . . . , en} be a basis for V . If ai = aijej (i = 1, . . . , n)
is a collection of n vectors5, we compute

ω(a1, a2, . . . , an) = a1i1a2i2 . . . aninω(ei1, ei2 , . . . , ein)

= a1i1a2i2 . . . aninεi1i2...,inω(e1, e2, . . . , en). (A.68)

In the first line we have exploited the linearity of ω in each slot, and in going
from the first to the second line we have used skew-symmetry to rearrange
the basis vectors in their canonical order. We deduce that all skew-symmetric
n-forms are proportional to the determinant

ω(a1, a2, . . . , an) ∝

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
,

and that the proportionality factor is the number ω(e1, e2, . . . , en). When
the number of its slots is equal to the dimension of the vector space, there is
therefore essentially only one skew-symmetric multilinear form and

∧n(V ∗)
is a one-dimensional vector space.

Now we use the notion of skew-symmetric n-linear forms to give a pow-
erful definition of the determinant of an endomorphism, i.e. a linear map
A : V → V . Let ω be a non-zero skew-symmetric n-linear form. The object

ωA(x1,x2, . . . ,xn)
def
= ω(Ax1, Ax2, . . . , Axn). (A.69)

5The index j on aij should really be a superscript since aij is the j-th contravariant
component of the vector ai. We are writing it as a subscript only for compatibility with
other equations in this section.
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is also a skew-symmetric n-linear form. Since there is only one such object
up to multiplicative constants, we must have

ω(Ax1, Ax2, . . . , Axn) ∝ ω(x1,x2, . . . ,xn). (A.70)

We define “detA” to be the constant of proportionality. Thus

ω(Ax1, Ax2, . . . , Axn) = det (A)ω(x1,x2, . . . ,xn). (A.71)

By writing this out in a basis where the linear map A is represented by the
matrix A, we easily see that

detA = detA. (A.72)

The new definition is therefore compatible with the old one. The advantage
of this more sophisticated definition is that it makes no appeal to a basis, and
so shows that the determinant of an endomorphism is a basis-independent
concept. A byproduct is an easy proof that det (AB) = det (A)det (B), a
result that is not so easy to establish with the elementary definition. We
write

det (AB)ω(x1,x2, . . . ,xn) = ω(ABx1, ABx2, . . . , ABxn)

= ω(A(Bx1), A(Bx2), . . . , A(Bxn))

= det (A)ω(Bx1, Bx2, . . . , Bxn)

= det (A)det (B)ω(x1,x2, . . . ,xn).

(A.73)

Cancelling the common factor of ω(x1,x2, . . . ,xn) completes the proof.

Exercise A.9: Let ω be a skew-symmetric n-linear form on an n-dimensional
vector space. Assuming that ω does not vanish identically, show that a set of
n vectors x1,x2, . . . ,xn is linearly independent, and hence forms a basis, if,
and only if, ω(x1,x2, . . . ,xn) 6= 0.

Exercise A.10: Extend the paring between V and its dual space V ∗ to a
pairing between the one-dimensional

∧n(V ∗) and its dual space. Use this
pairing, together with the result of exercise A.5, to show that

detAT = detA∗ = [detA]∗ = [detA]T = detA = detA,

where the “∗” denotes the conjugate operator (and not complex conjugation)
and the penultimate equality holds because transposition has no effect on a
one-by-one matrix. Conclude that detA = detAT . A determinant is therefore
unaffected by the interchange of its rows with its columns.
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Exercise A.11: Cauchy-Binet formula. Let A be a m-by-n matrix and B be
an n-by-m matrix. The matrix product AB is therefore defined, and is an
m-by-m matrix. Let S be a subset of {1, . . . , n} with m elements, and let AS

be the m-by-m matrix whose columns are the columns of A corresponding to
indices in S. Similarly let BS be the m-by-m matrix whose rows are the rows
of B with indices in S. Show that

detAB =
∑

S

detAS detBS

where the sum is over all n!/m!(n −m)! subsets S. If m > n there there are
no such subsets. Show that in this case detAB = 0.

Exercise A.12: Let

A =

(
a b

c d

)

be a partitioned matrix where a is m-by-m, b is m-by-n, c is n-by-m, and d

is n-by-n. By making a Gaussian decomposition

A =

(
Im x

0 In

)(
Λ1 0

0 Λ2

)(
Im 0

y In

)
,

show that, for invertible d, we have Schur’s determinant formula 6

detA = det(d) det(a− bd−1c).

A.6.2 The adjugate matrix

Given a square matrix

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


 (A.74)

and an element aij, we define the corresponding minor Mij to be the deter-
minant of the (n− 1)-by-(n− 1) matrix constructed by deleting from A the
row and column containing aij. The number

Aij = (−1)i+jMij (A.75)

6I. Schur, J. für reine und angewandte Math., 147 (1917) 205-232.
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is then called the co-factor of the element aij. (It is traditional to use up-
percase letters to denote co-factors.) The basic result involving co-factors is
that ∑

j

aijAi′j = δii′detA. (A.76)

When i = i′, this is known as the Laplace development of the determinant
about row i. We get zero when i 6= i′ because we are effectively developing
a determinant with two equal rows. We now define the adjugate matrix,7

AdjA, to be the transposed matrix of the co-factors:

(AdjA)ij = Aji. (A.77)

In terms of this we have

A(AdjA) = (detA)I. (A.78)

In other words

A−1 =
1

detA
AdjA. (A.79)

Each entry in the adjugate matrix is a polynomial of degree n − 1 in the
entries of the original matrix. Thus, no division is required to form it, and
the adjugate matrix exists even if the inverse matrix does not.

Exercise A.13: It is possible to Laplace-develop a determinant about a set of
rows. For example, the development of a 4-by-4 determinant about its first
two rows is given by:

∣∣∣∣∣∣∣∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣
=

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
∣∣∣∣
c3 d3

c4 d4

∣∣∣∣−
∣∣∣∣
a1 c1
a2 c2

∣∣∣∣
∣∣∣∣
b3 d3

b4 d4

∣∣∣∣+
∣∣∣∣
a1 d1

a2 d2

∣∣∣∣
∣∣∣∣
b3 c3
b4 c4

∣∣∣∣

+

∣∣∣∣
b1 c1
b2 c2

∣∣∣∣
∣∣∣∣
a3 d3

a4 d4

∣∣∣∣−
∣∣∣∣
b1 d1

b2 d2

∣∣∣∣
∣∣∣∣
a3 c3
a4 c4

∣∣∣∣+
∣∣∣∣
c1 d1

c2 d2

∣∣∣∣
∣∣∣∣
a3 b3
a4 b4

∣∣∣∣

Understand why this formula is correct, and, using that insight, describe the
general rule.

7Some authors rather confusingly call this the adjoint matrix .
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Exercise A.14: Sylvester’s Lemma.8 Let A and B be two n-by-n matrices.
Show that

detAdetB =
∑

detA′ detB′

where A′ and B′ are constructed by selecting a fixed set of k < n columns of B

(which we can, without loss of generality, take to to be the first k columns) and
interchanging them with k columns of A, preserving the order of the columns.
The sum is over all n!/k!(n−k)! ways of choosing columns of A. (Hint: Show
that, without loss of generality, we can take the columns of A to be a set of
basis vectors, and that, in this case, the lemma becomes a re-statement of your
“general rule” from the previous problem.)

Cayley’s theorem

You will know that the possible eigenvalues of the n-by-n matrix A are given
by the roots of its characteristic equation

0 = det (A− λI) = (−1)n
(
λn − tr (A)λn−1 + · · ·+ (−1)ndet (A)

)
, (A.80)

and have probably met with Cayley’s theorem that asserts that every matrix
obeys its own characteristic equation.

An − tr (A)An−1 + · · ·+ (−1)ndet (A)I = 0. (A.81)

The proof of Cayley’s theorem involves the adjugate matrix. We write

det (A− λI) = (−1)n
(
λn + α1λ

n−1 + · · ·+ αn
)

(A.82)

and observe that

det (A− λI)I = (A− λI)Adj (A− λI). (A.83)

Now Adj (A− λI) is a matrix-valued polynomial in λ of degree n− 1, and it
can be written

Adj (A− λI) = C0λ
n−1 + C1λ

n−2 + · · ·+ Cn−1, (A.84)

for some matrix coefficients Ci. On multiplying out the equation

(−1)n
(
λn + α1λ

n−1 + · · ·+ αn
)
I = (A−λI)(C0λ

n−1 +C1λ
n−2 + · · ·+Cn−1)

(A.85)

8J. J. Sylvester, Phil. Mag. 1 (1851) 295–305.
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and comparing like powers of λ, we find the relations

(−1)nI = −C0,

(−1)nα1I = −C1 + AC0,

(−1)nα2I = −C2 + AC1,
...

(−1)nαn−1I = −Cn−1 + ACn−2,

(−1)nαnI = ACn−1.

Multiply the first equation on the left by An, the second by An−1, and so
on down the last equation which we multiply by A0 ≡ I. Now add. We find
that the sum telescopes to give Cayley’s theorem,

An + α1A
n−1 + · · ·+ αnI = 0,

as advertised.

A.6.3 Differentiating determinants

Suppose that the elements of A depend on some parameter x. From the
elementary definition

detA = εi1i2...ina1i1a2i2 . . . anin ,

we find

d

dx
detA = εi1i2...in

(
a′1i1a2i2 . . . anin + a1i1a

′
2i2 . . . anin + · · ·+ a1i1a2i2 . . . a

′
nin

)
.

(A.86)
In other words,

d

dx
detA =

∣∣∣∣∣∣∣∣

a′11 a′12 . . . a′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a′21 a′22 . . . a′2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
+· · ·+

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn

∣∣∣∣∣∣∣∣
.

The same result can also be written more compactly as

d

dx
detA =

∑

ij

daij
dx

Aij, (A.87)



A.7. DIAGONALIZATION AND CANONICAL FORMS 859

where Aij is cofactor of aij. Using the connection between the adjugate
matrix and the inverse, this is equivalent to

1

detA

d

dx
detA = tr

{
dA

dx
A−1

}
, (A.88)

or
d

dx
ln (detA) = tr

{
dA

dx
A−1

}
. (A.89)

A special case of this formula is the result

∂

∂aij
ln (detA) =

(
A−1

)
ji
. (A.90)

A.7 Diagonalization and canonical forms

An essential part of the linear algebra tool-kit is the set of techniques for the
reduction of a matrix to its simplest, canonical form. This is often a diagonal
matrix.

A.7.1 Diagonalizing linear maps

A common task is the diagonalization of a matrix A representing a linear
map A. Let us recall some standard material relating to this:

i) If Ax = λx for a non-zero vector x, then x is said to be an eigenvector
of A with eigenvalue λ.

ii) A linear operator A on a finite-dimensional vector space is said to be
self-adjoint , or Hermitian, with respect to the inner product 〈 , 〉 if
A = A†, or equivalently if 〈x, Ay〉 = 〈Ax,y〉 for all x and y.

iii) If A is Hermitian with respect to a positive definite inner product 〈 , 〉
then all the eigenvalues λ are real. To see that this is so, we write

λ〈x,x〉 = 〈x, λx〉 = 〈x, Ax〉 = 〈Ax,x〉 = 〈λx,x〉 = λ∗〈x,x〉. (A.91)

Because the inner product is positive definite and x is not zero, the
factor 〈x,x〉 cannot be zero. We conclude that λ = λ∗.

iii) If A is Hermitian and λi and λj are two distinct eigenvalues with eigen-
vectors xi and xj, respectively, then 〈xi,xj〉 = 0. To prove this, we
write

λj〈xi,xj〉 = 〈xi, Axj〉 = 〈Axi,xj〉 = 〈λixi,xj〉 = λ∗i 〈xi,xj〉. (A.92)
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But λ∗i = λi, and so (λi − λj)〈xi,xj〉 = 0. Since, by assumption,
(λi − λj) 6= 0 we must have 〈xi,xj〉 = 0.

iv) An operator A is said to be diagonalizable if we can find a basis for V
that consists of eigenvectors of A. In this basis, A is represented by the
matrix A = diag (λ1, λ2, . . . , λn), where the λi are the eigenvalues.

Not all linear operators can be diagonalized. The key element determining
the diagonalizability of a matrix is the minimal polynomial equation obeyed
by the matrix representing the operator. As mentioned in the previous sec-
tion, the possible eigenvalues an N -by-N matrix A are given by the roots of
the characteristic equation

0 = det (A− λI) = (−1)N
(
λN − tr (A)λN−1 + · · ·+ (−1)Ndet (A)

)
.

This is because a non-trivial solution to the equation

Ax = λx (A.93)

requires the matrix A−λI to have a non-trivial nullspace, and so det (A− λI)
must vanish. Cayley’s Theorem, which we proved in the previous section,
asserts that every matrix obeys its own characteristic equation:

AN − tr (A)AN−1 + · · ·+ (−1)Ndet (A)I = 0.

The matrix A may, however, satisfy an equation of lower degree. For exam-
ple, the characteristic equation of the matrix

A =

(
λ1 0
0 λ1

)
(A.94)

is (λ − λ1)
2. Cayley therefore asserts that (A − λ1I)

2 = 0. This is clearly
true, but A also satisfies the equation of first degree (A− λ1I) = 0.

The equation of lowest degree satisfied by A is said to be the minimal
polynomial equation. It is unique up to an overall numerical factor: if two
distinct minimal equations of degree n were to exist, and if we normalize
them so that the coefficients of An coincide, then their difference, if non-
zero, would be an equation of degree ≤ (n − 1) obeyed by A — and a
contradiction to the minimal equation having degree n.

If

P (A) ≡ (A− λ1I)
α1(A− λ2I)

α2 · · · (A− λnI)αn = 0 (A.95)
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is the minimal equation then each root λi is an eigenvalue of A. To prove
this, we select one factor of (A− λiI) and write

P (A) = (A− λiI)Q(A), (A.96)

where Q(A) contains all the remaining factors in P (A). We now observe
that there must be some vector y such that x = Q(A)y is not zero. If there
were no such y then Q(A) = 0 would be an equation of lower degree obeyed
by A in contradiction to the assumed minimality of P (A). Since

0 = P (A)y = (A− λiI)x (A.97)

we see that x is an eigenvector of A with eignvalue λi.
Because all possible eigenvalues appear as roots of the characteristic equa-

tion, the minimal equation must have the same roots as the characteristic
equation, but with equal or lower multiplicities αi.

In the special case that A is self-adjoint, or Hermitian, with respect to a
positive definite inner product 〈 , 〉 the minimal equation has no repeated
roots. Suppose that this were not so, and that A has minimal equation
(A− λI)2R(A) = 0 where R(A) is a polynomial in A. Then, for all vectors
x we have

0 = 〈Rx, (A− λI)2Rx〉 = 〈(A− λI)Rx, (A− λI)Rx〉. (A.98)

Now the vanishing of the rightmost expression shows that (A−λI)R(A)x = 0
for all x. In other words

(A− λI)R(A) = 0. (A.99)

The equation with the repeated factor was not minimal therefore, and we
have a contradiction.

If the equation of lowest degree satisfied by the matrix has no repeated
roots, the matrix is diagonalizable; if there are repeated roots, it is not. The
last statement should be obvious, because a diagonalized matrix satisfies an
equation with no repeated roots, and this equation will hold in all bases,
including the original one. The first statement, in combination with with
the observation that the minimal equation for a Hermitian matrix has no
repeated roots, shows that a Hermitian (with respect to a positive definite
inner product) matrix can be diagonalized.
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To establish the first statement, suppose that A obeys the equation

0 = P (A) ≡ (A− λ1I)(A− λ2I) · · · (A− λnI), (A.100)

where the λi are all distinct. Then, setting x→ A in the identity9

1 =
(x− λ2)(x− λ3) · · · (x− λn)

(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)
+

(x− λ1)(x− λ3) · · · (x− λn)
(λ2 − λ1)(λ2 − λ3) · · · (λ2 − λn)

+ · · ·

+
(x− λ1)(x− λ2) · · · (x− λn−1)

(λn − λ1)(λn − λ2) · · · (λn − λn−1)
, (A.101)

where in each term one of the factors of the polynomial is omitted in both
numerator and denominator, we may write

I = P1 + P2 + · · ·+ Pn, (A.102)

where

P1 =
(A− λ2I)(A− λ3I) · · · (A− λnI)
(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)

, (A.103)

etc. Clearly PiPj = 0 if i 6= j, because the product contains the minimal
equation as a factor. Multiplying (A.102) by Pi therefore gives P2

i = Pi,
showing that the Pi are projection operators. Further (A− λiI)(Pi) = 0, so

(A− λiI)(Pix) = 0 (A.104)

for any vector x, and we see that Pix, if not zero, is an eigenvector with
eigenvalue λi. Thus Pi projects into the i-th eigenspace. Applying the reso-
lution of the identity (A.102) to a vector x shows that it can be decomposed

x = P1x + P2x + · · ·+ Pnx

= x1 + x2 + · · ·+ xn, (A.105)

where xi, if not zero, is an eigenvector with eigenvalue λi. Since any x can
be written as a sum of eigenvectors, the eigenvectors span the space.

9The identity may be verified by observing that the difference of the left and right hand
sides is a polynomial of degree n−1, which, by inspection, vanishes at the n points x = λi.
But a polynomial that has more zeros than its degree must be identically zero.
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Jordan decomposition

If the minimal polynomial has repeated roots, the matrix can still be re-
duced to the Jordan canonical form, which is diagonal except for some 1’s
immediately above the diagonal.

For example, suppose the characteristic equation for a 6-by-6 matrix A
is

0 = det (A− λI) = (λ1 − λ)3(λ2 − λ)3, (A.106)

but the minimal equation is

0 = (λ1 − λ)3(λ2 − λ)2. (A.107)

Then the Jordan form of A might be

T−1AT =




λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0
0 0 0 λ2 1 0
0 0 0 0 λ2 0
0 0 0 0 0 λ2



. (A.108)

One may easily see that (A.107) is the minimal equation for this matrix. The
minimal equation alone does not uniquely specify the pattern of λi’s and 1’s
in the Jordan form, though.

It is rather tedious, but quite straightforward, to show that any linear
map can be reduced to a Jordan form. The proof is sketched in the following
exercises:

Exercise A.15: Suppose that the linear operator T is represented by an N×N
matrix, where N > 1. T obeys the equation

(T − λI)p = 0,

with p = N , but does not obey this equation for any p < N . Here λ is a
number and I is the identity operator.

i) Show that if T has an eigenvector, the corresponding eigenvalue must be
λ. Deduce that T cannot be diagonalized.

ii) Show that there exists a vector e1 such that (T − λI)Ne1 = 0, but no
lesser power of (T − λI) kills e1.
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iii) Define e2 = (T − λI)e1, e3 = (T − λI)2e1, etc. up to eN . Show that the
vectors e1, . . . , eN are linearly independent.

iv) Use e1, . . . , eN as a basis for your vector space. Taking

e1 =




0
...
0
1


 , e2 =




0
...
1
0


 , . . . , eN =




1
0
...
0


 ,

write out the matrix representing T in the ei basis.

Exercise A.16: Let T : V → V be a linear map, and suppose that the minimal
polynomial equation satisfied by T is

Q(T ) = (T − λ1I)
r1(T − λ2I)

r2 . . . (T − λnI)rn = 0.

Let Vλi
denote the space of generalized eigenvectors for the eigenvalue λi. This

is the set of x such that (T − λiI)rix = 0. You will show that

V =
⊕

i

Vλi
.

i) Consider the set of polynomials Qλi,j(t) = (t − λi)−(ri−j+1)Q(t) where
j = 1, . . . , ri. Show that this set of N ≡ ∑

i ri polynomials forms a
basis for the vector space FN−1(t) of polynomials in t of degree no more
than N − 1. (Since the number of Qλi,j is N , and this is equal to the
dimension of FN−1(t), the claim will be established if you can show that
the polynomials are linearly independent. This is easy to do: suppose
that ∑

λi,j

αλi,jQλi,j(t) = 0.

Set t = λi and deduce that αλi,1 = 0. Knowing this, differentiate with
respect to t and again set t = λi and deduce that αλi,2 = 0, and so on. )

ii) Since the Qλi,j form a basis, and since 1 ∈ FN−1, argue that we can find
βλi,j such that

1 =
∑

λi,j

βλi,jQλi,j(t).

Now define

Pi =

ri∑

j=1

βλi,jQλi,j(T ),
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and so
I =

∑

λi

Pi, (?)

Use the minimal polynomial equation to deduce that PiPj = 0 if i 6= j.
Multiplication of ? by Pi then shows that PiPj = δijPj . Deduce from this
that ? is a resolution of the identity into a sum of mutually orthogonal
projection operators Pi that project onto the spaces Vλi

. Conclude that
any x can be expanded as x =

∑
i xi with xi ≡ Pix ∈ Vλi

.
iii) Show that the decomposition also implies that Vλi

∩ Vλj
= {0} if i 6=

j. (Hint: a vector in Vλi
is called by all projectors with the possible

exception of Pi and a vector in Vλj
will be killed by all the projectors

with the possible exception of Pj . )
iv) Put these results together to deduce that V is a direct sum of the Vλi

.
v) Combine the result of part iv) with the ideas behind exercise A.15 to

complete the proof of the Jordan decomposition theorem.

A.7.2 Diagonalizing quadratic forms

Do not confuse the notion of diagonalizing the matrix representing a linear
map A : V → V with that of diagonalizing the matrix representing a
quadratic form. A (real) quadratic form is a map Q : V → R, which is
obtained from a symmetric bilinear form B : V × V → R by setting the two
arguments, x and y, in B(x,y) equal:

Q(x) = B(x,x). (A.109)

No information is lost by this specialization. We can recover the non-diagonal
(x 6= y) values of B from the diagonal values, Q(x), by using the polarization
trick

B(x,y) =
1

2
[Q(x + y)−Q(x)−Q(y)]. (A.110)

An example of a real quadratic form is the kinetic energy term

T (ẋ) =
1

2
mijẋ

iẋj =
1

2
ẋTMẋ (A.111)

in a “small vibrations” Lagrangian. Here, M, with entries mij, is the mass
matrix.

Whilst one can diagonalize such forms by the tedious procedure of finding
the eigenvalues and eigenvectors of the associated matrix, it is simpler to use
Lagrange’s method, which is based on repeatedly completing squares.
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Consider, for example, the quadratic form

Q = x2 − y2 − z2 + 2xy − 4xz + 6yz = (x, y, z )




1 1 −2
1 −1 3
−2 3 −1





x
y
z


 .

(A.112)
We complete the square involving x:

Q = (x + y − 2z)2 − 2y2 + 10yz − 5z2, (A.113)

where the terms outside the squared group no longer involve x. We now
complete the square in y:

Q = (x + y − 2z)2 − (
√

2y − 5√
2
z)2 +

15

2
z2, (A.114)

so that the remaining term no longer contains y. Thus, on setting

ξ = x+ y − 2z,

η =
√

2y − 5√
2
z,

ζ =

√
15

2
z,

we have

Q = ξ2 − η2 + ζ2 = ( ξ, η, ζ )




1 0 0
0 −1 0
0 0 1





ξ
η
ζ


 . (A.115)

If there are no x2, y2, or z2 terms to get us started, then we can proceed by
using (x + y)2 and (x− y)2. For example, consider

Q = 2xy + 2yz + 2zy,

=
1

2
(x+ y)2 − 1

2
(x− y)2 + 2xz + 2yz

=
1

2
(x+ y)2 + 2(x+ y)z − 1

2
(x− y)2

=
1

2
(x+ y + 2z)2 − 1

2
(x− y)2 − 4z2

= ξ2 − η2 − ζ2,
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where

ξ =
1√
2
(x + y + 2z),

η =
1√
2
(x− y),

ζ =
√

2z.

A judicious combination of these two tactics will reduce the matrix represent-
ing any real quadratic form to a matrix with ±1’s and 0’s on the diagonal,
and zeros elsewhere. As the egregiously asymmetric treatment of x, y, z in
the last example indicates, this can be done in many ways, but Cayley’s Law
of Inertia asserts that the signature — the number of +1’s, −1’s and 0’s
— will always be the same. Naturally, if we allow complex numbers in the
redefinitions of the variables, we can always reduce the form to one with only
+1’s and 0’s.

The essential difference between diagonalizing linear maps and diagonal-
izing quadratic forms is that in the former case we seek matrices A such that
A−1MA is diagonal, whereas in the latter case we seek matrices A such that
ATMA is diagonal. Here, the superscript T denotes transposition.

Exercise A.17: Show that the matrix

Q =

(
a b
b c

)

representing the quadratic form

Q(x, y) = ax2 + 2bxy + cy2

may be reduced to
(

1 0
0 1

)
,

(
1 0
0 −1

)
, or

(
1 0
0 0

)
,

depending on whether the discriminant , ac − b2, is respectively greater than
zero, less than zero, or equal to zero.

Warning: You might be tempted to refer to the discriminant ac− b2 as being
the determinant of Q. It is indeed the determinant of the matrix Q, but there
is no such thing as the “determinant” of the quadratic form itself. You may
compute the determinant of the matrix representing Q in some basis, but if
you change basis and repeat the calculation you will get a different answer.
For real quadratic forms, however, the sign of the determinant stays the same,
and this is all that the discriminant cares about.
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A.7.3 Block-diagonalizing symplectic forms

A skew-symmetric bilinear form ω : V × V → R is often called a symplectic
form. Such forms play an important role in Hamiltonian dynamics and in
optics. Let {ei} be a basis for V , and set

ω(ei, ej) = ωij. (A.116)

If x = xiei and y = yiei, we therefore have

ω(x,y) = ω(ei, ej)x
iyj = ωijx

iyj. (A.117)

The numbers ωij can be thought of as the entries in a real skew-symmetric
matrix Ω, in terms of which ω(x,y) = xTΩy. We cannot exactly “diagonal-
ize” such a skew-symmetric matrix because a matrix with non-zero entries
only on its principal diagonal is necessarily symmetric. We can do the next
best thing, however, and reduce Ω to block diagonal form with simple 2-by-2
skew matrices along the diagonal.

We begin by expanding ω as

ω =
1

2
ωije

∗i∧, e∗j (A.118)

where the wedge (or exterior) product e∗j ∧ e∗j of a pair of basis vectors in
V ∗ denotes the particular skew-symmetric bilinear form

e∗i ∧ e∗j(eα, eβ) = δiαδ
j
β − δiβδjα. (A.119)

Again, if x = xiei and y = yiei, we have

e∗i ∧ e∗j(x,y) = e∗i ∧ e∗j(xαeα, y
βeβ)

= (δiαδ
j
β − δiβδjα)xαyβ

= xiyj − yixj. (A.120)

Consequently

ω(x,y) =
1

2
ωij(x

iyj − yixj) = ωijx
iyj, (A.121)

as before. We extend the definition of the wedge product to other elements
of V ∗ by requiring “∧” to be associative and distributive, taking note that

e∗i ∧ e∗j = −e∗j ∧ e∗i, (A.122)
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and so 0 = e∗1 ∧ e∗1 = e∗2 ∧ e∗2, etc.
We next show that there exists a basis {f ∗i} of V ∗ such that

ω = f∗1 ∧ f∗2 + f∗3 ∧ f∗4 + · · ·+ f∗(p−1) ∧ f∗p. (A.123)

Here, the integer p ≤ n is the rank of ω. It is necessarily an even number.
The new basis is constructed by a skew-analogue of Lagrange’s method

of completing the square. If

ω =
1

2
ωije

∗i ∧ e∗j (A.124)

is not identically zero, we can, after re-ordering the basis if neceessary, assume
that ω12 6= 0. Then

ω =

(
e∗1 − 1

ω12

(ω23e
∗3 + · · ·+ ω2ne

∗n)

)
∧(ω12e

∗2+ω13e
∗3+· · ·ω1ne

∗n)+ω{3}

(A.125)
where ω{3} ∈ ∧2(V ∗) does not contain e∗1 or e∗2. We set

f∗1 = e∗1 − 1

ω12
(ω23e

∗3 + · · ·+ ω2ne
∗n) (A.126)

and
f∗2 = ω12e

∗2 + ω13e
∗3 + · · ·ω1ne

∗n. (A.127)

Thus,
ω = f∗1 ∧ f∗2 + ω{3}. (A.128)

If the remainder ω{3} is identically zero, we are done. Otherwise, we apply
the same same process to ω{3} so as to construct f ∗3, f∗4 and ω{5}; we continue
in this manner until we find a remainder, ω{p+1}, that vanishes.

Let {fi} be the basis for V dual to the basis {f ∗i}. Then ω(f1, f2) =
−ω(f2, f1) = ω(f3, f4) = −ω(f4, f3) = 1, and so on, all other values being zero.
This shows that if we define the coefficients aij by expressing f ∗i = aije

∗j ,
and hence ei = fja

j
i, then the matrix Ω has been expressed as

Ω = AT Ω̃A, (A.129)

where A is the matrix with entries aij, and Ω̃ is the matrix

Ω̃ =




0 1
−1 0

0 1
−1 0

. . .



, (A.130)
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which contains p/2 diagonal blocks of

(
0 1
−1 0

)
, (A.131)

and all other entries are zero.

Example: Consider the skew bilinear form

ω(x,y) = xTΩy = ( x1, x2, x3, x4 )




0 1 3 0
−1 0 1 5
−3 −1 0 0

0 −5 0 0







y1

y2

y3

y4


 . (A.132)

This corresponds to

ω = e∗1 ∧ e∗2 + 3e∗1 ∧ e∗3 + e∗2 ∧ e∗3 + 5e∗2 ∧ e∗4. (A.133)

Following our algorithm, we write ω as

ω = (e∗1 − e∗3 − 5e∗4) ∧ (e∗2 + 3e∗3)− 15e∗3 ∧ e∗4. (A.134)

If we now set

f∗1 = e∗1 − e∗3 − 5e∗4,

f∗2 = e∗2 + 3e∗3,

f∗3 = −15e∗3,

f∗4 = e∗4, (A.135)

we have

ω = f∗1 ∧ f∗2 + f∗3 ∧ f∗4. (A.136)

We have correspondingly expressed the matrix Ω as




0 1 3 0
−1 0 1 5
−3 −1 0 0

0 −5 0 0


 =




1 0 0 0
0 1 0 0
−1 3 −15 0
−5 0 0 1







0 1
−1 0

0 1
−1 0







1 0 −1 −5
0 1 3 0
0 0 −15 0
0 0 0 1


 .

(A.137)


