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Repeated index summation. Throughout this text, the repeated pairs of upper/lower 
indices are always summed over

Ga
bxb ≡

n∑

b=1

Ga
bxb , (3.1)

unless explicitly stated otherwise.

Let GL(n,F) be the group of general linear transformations,

GL(n,F) = {G : F n → F n | det(G) 6= 0} . (3.2)

UnderGL(n,F) a basis set ofV is mapped into another basis set by multiplication
with a [n×n] matrixG with entries inF,

e′ a = eb(G−1)b
a .

As the vectorx is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′
a = Ga

bxb .

Definition. We shall refer to the set of[n×n] matricesG as astandard repof
GL(n,F), and the space of alln-tuples(x1, x2, . . . , xn)

t, xi ∈ F on which these
matrices act as thestandard representation spaceV .

Under a general linear transformationG ∈ GL(n,F), the row of basis vectors
transforms by right multiplication ase′ = eG−1, and the column ofxa’s trans-
forms by left multiplication asx′ = Gx. Under left multiplication the column
(row transposed) of basis vectorset transforms ase′t = G†et, where thedual rep
G† = (G−1)t is the transpose of the inverse ofG. This observation motivates in-
troduction of adual representation spacēV , the space on whichGL(n,F) acts via
the dual repG†.

Definition. If V is a vector representation space, then thedual spacēV is the set of
all linear forms onV over the fieldF.

If {e1, · · · , en} is a basis ofV , thenV̄ is spanned by thedual basis{f1, · · · , fn},
the set ofn linear formsfa such that

fa(e
b) = δba ,

whereδba is the Kronecker symbol,δba = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by upper
indices

(y1, y2, . . . , yn) . (3.3)
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They transform underGL(n,F) as

y′a = (G†)b
ayb . (3.4)

ForGL(n,F)no complex conjugation is impliedby the†notation; that interpretation
applies only to unitary subgroups ofGL(n,C). G can be distinguished fromG† by
meticulously keeping track of the relative ordering of the indices,

Gb
a → Ga

b , (G†)ba → Gb
a . (3.5)

As a plethora of vector spaces, indices and dual spaces looms large in our imme-

diate future, it pays to streamline the notation now, by singling out one vector space
as “defining” and indicating the dual vector space by raised indices.

The next two sections introduce the three key notions in our construction of invar-
ince groups:defining rep, section3.2 (see also comments on page23); invariants,
section3.4; andprimitiveness assumption, page21. Chapter4 introduces diagram-
matic notation, the computational tool essential to understanding all computations
to come. As these concepts can be understood only in relation to one another, not
singly, and an exposition of necessity progresses linearly, the reader is asked to be
patient, in the hope that the questions that naturally arise upon first reading will be
addressed in due course.

If the tensorial object acts as a matrix, in general the  order  of indices must be
indicated. 
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3.2 DEFINING SPACE, TENSORS, REPS

Definition. In what followsV will always denote thedefiningn-dimensional com-
plex vector representation space, that is to say the initial, “elementary multiplet”
space within which we commence our deliberations. Along with the defining vector
representation spaceV comes thedualn-dimensional vector representation space
V̄ . We shall denote the corresponding element ofV̄ by raising the index, as in (3.3),
so the components of defining space vectors, resp. dual vectors, are distinguished
by lower, resp. upper indices:

x=(x1, x2, . . . , xn) , x ∈ V

x̄=(x1, x2, . . . , xn) , x̄ ∈ V̄ . (3.10)

Definition. LetG be a group of transformations acting linearly onV , with the action
of a group elementg ∈ G on a vectorx ∈ V given by an[n×n] matrixG

x′
a = Ga

bxb a, b = 1, 2, . . . , n . (3.11)

We shall refer toGa
b as thedefining repof the groupG. The action ofg ∈ G on a

vectorq̄ ∈ V̄ is given by thedual rep[n×n] matrixG†:

x′a = xb(G†)b
a = Ga

bx
b . (3.12)

In the applications considered here, the groupG will almost always be assumed
to be a subgroup of theunitary group, in which caseG−1 = G†, and† indicates
hermitian conjugation:

(G†)a
b = (Gb

a)∗ = Gb
a . (3.13)

Definition. A tensorx ∈ V p ⊗ V̄ q transforms under the action ofg ∈ G as

x′a1a2...aq

b1...bp
= G

a1a2...aq

b1...bp
, dp...d1

cq...c2c1 x
c1c2...cq
d1...dp

, (3.14)

where theV p ⊗ V̄ q tensor repof g ∈ G is defined by the group acting on all indices
of x.

G
a1a2...ap

b1...bq
, dq...d1

cp...c2c1 ≡ Ga1
c1G

a2
c2 . . .G

ap
cpGbq

dq . . .Gb2
d21Gb1

d1 . (3.15)

Tensors can be combined into other tensors by
(a)addition:

zab...cd...e = αxab...c
d...e + βyab...cd...e , α, β ∈ C , (3.16)

(b) product:

zabcdefg = xabc
e ydfg , (3.17)

(c) contraction:Setting an upper and a lower index equal and summing over all of
its values yields a tensorz ∈ V p−1 ⊗ V̄ q−1 without these indices:

zbc...de...f = xabc...d
e...af , zade = xabc

e ydcb . (3.18)

A tensorx ∈ V p ⊗ V̄ q transforms linearly under the action ofg, so it can be
considered a vector in thed = np+q-dimensional vector spacẽV = V p ⊗ V̄ q. We
can replace the array of its indices by one collective index:

xα = x
a1a2...aq

b1...bp
. (3.19)
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One could be more explicit and give a table like

x1 = x11...1
1...1 , x2 = x21...1

1...1 , . . . , xd = xnn...n
n...n , (3.20)

but that is unnecessary, as we shall use the compact index notation only as a short-
hand.

Definition. Hermitian conjugationis effected by complex conjugation and index
transposition:

(h†)abcde ≡ (hedc
ba )∗ . (3.21)

Complex conjugation interchanges upper and lower indices, as in (3.10); transposi-
tion reverses their order. A matrix ishermitianif its elements satisfy

(M†)ab = Ma
b . (3.22)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, asM b

a = (M†)b
a = Ma

b.

Definition. The tensor dual toxα defined by (3.19) has form

xα = xbp...b1
aq ...a2a1

. (3.23)

Combined, the above definitions lead to the hermitian conjugation rule for collective
indices: a collective index is raised or lowered by interchanging the upper and lower
indices and reversing their order:

α =

{
a1a2 . . . aq
b1 . . . bp

}
↔ α =

{
bp . . . b1
aq . . . a2a1

}
. (3.24)

This transposition convention will be motivated further by the diagrammatic rules
of section4.1.

The tensor rep (3.15) can be treated as a[d×d] matrix

Gα
β = G

a1a2...aq

b1...bp
, dp...d1

cq...c2c1 , (3.25)

and the tensor transformation (3.14) takes the usual matrix form

x′
α = Gα

βxβ . (3.26)

Tensor: ordering of upper only, lower only indices matters.
Matrix acting on a tensor: must separate "in", "out" indices (or groups of inidices).
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If a bilinear formm(x̄, y) = xaMa
byb is invariant for allg ∈ G, the matrix

Ma
b = Ga

cGb
dMc

d (3.30)

is aninvariant matrix. Multiplying with Gb
e and using the unitary condition (3.13),

we find that the invariant matricescommutewith all transformationsg ∈ G:

[G,M] = 0 . (3.31)

If we wish to treat a tensor with equal number of upper and lower indices as a
matrixM : V p ⊗ V̄ q → V p ⊗ V̄ q,

Mα
β = M

a1a2...aq

b1...bp
, dp...d1

cq...c2c1 , (3.32)

then the invariance condition (3.29) will take the commutator form (3.31). Our 
convention of separating the two sets of indices by a comma, and reversing the 
order of the indices to the right of the comma, is motivated by the diagrammatic 
notation introduced below (see (4.6)).
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