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Repeatedndexsummation. Throughouthistext,therepeategairsof upper/lower
indicesarealwayssummecover

G lr, = Z Gz . (3.1)
b=1
unless explicitly stated otherwise.

Let GL(n,F) be the group of general linear transformations,
GL(n,F)={G:F" - TF"| det(G) # 0} . (3.2)

UnderGL(n,F) a basis set of is mapped into another basis set by multiplication
with a[n x n] matrix G with entries infF,

e/ a _ eb(G—l)ba )

As the vectorx is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

/ b
x, =G xp .

Definition. We shall refer to the set dh x n] matricesG as astandard repof
GL(n,F), and the space of all-tuples(x1, xs, ..., z,)!, x; € F on which these
matrices act as th&tandard representation spate

Under a general linear transformatiGhe GL(n,F), the row of basis vectors
transforms by right multiplication a8’ = e G~ !, and the column of,’s trans-
forms by left multiplication ast’ = Gaz. Under left multiplication the column
(row transposed) of basis vectarstransforms ag’’ = G'e?, where thedual rep
Gt = (G~1)t is the transpose of the inverse Gf This observation motivates in-
troduction of adual representation spadé, the space on whict'L(n, F) acts via
the dual repa".

Definition. If V is a vector representation space, thendihal spacé/ is the set of
all linear forms onl” over the fieldF.

If {e!,---,e"} is a basis of//, thenV is spanned by thdual basis{f;, -, f,},
the set ofn linear formsf, such that

f,(e?) =7,
whered? is the Kronecker symbolf® = 1 if « = b, and zero otherwise. The

components of dual representation space vectors will here be distinguished by upper
indices

WPy (3.3)
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They transform unde® L(n, F) as
Y =GNy (3.4)
ForG L(n, F) no complex conjugation isimplied by thaotation; thatinterpretation

applies only to unitary subgroups6fL(n, C). G can be distinguished frodi' by
meticulously keeping track of the relative ordering of the indices,

Gt =G.b, (@AM =aGh,. (3.5)

If the tensorial object acts as a matrix, in general the order of indices must be
indicated.

As aplethoraof vectorspacesindicesanddualspacesoomslargein ourimme-

diate future, it pays to streamline the notation now, by singling out one vector space

as “defining” and indicating the dual vector space by raised indices.

The next two sections introduce the three key notions in our construction of invar-

ince groupsdefining rep section3.2 (see also comments on pag®; invariants
section3.4; andprimitiveness assumptippage?21. Chapte# introduces diagram-

matic notation, the computational tool essential to understanding all computations
to come. As these concepts can be understood only in relation to one another, not
singly, and an exposition of necessity progresses linearly, the reader is asked to be
patient, in the hope that the questions that naturally arise upon first reading will be

addressed in due course.
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3.2 DEFINING SPACE, TENSORS, REPS

Definition. In what followsV will always denote théefiningn-dimensional com-

plex vector representation space, that is to say the initial, “elementary multiplet”
space within which we commence our deliberations. Along with the defining vector
representation spadé comes thalual n-dimensional vector representation space

V. We shall denote the corresponding elemerit dify raising the index, as ir8(3),

so the components of defining space vectors, resp. dual vectors, are distinguished
by lower, resp. upper indices:

r=(x1,22,...,Tn), XEV

z=(z',2%...,2"), xe€V. (3.10)

Definition. LetG be a group of transformations acting linearlylénwith the action
of a group elemeny € G on a vector: € V' given by anfn x n] matrix G
i.@els ab=1,2,....n. (3.11)
We shall refer ta7,” as thedefining repof the groupG. The action ofy € G on a
vectorg € V is given by thédual'rép|» x n] matrix G':
2’ = 2P(G1)p? = G%a®. (3.12)

In the applications considered here, the gréupill almost always be assumed
to be a subgroup of thenitary group in which caseG—! = GT, and' indicates
hermitian conjugation:

) e e (3.13)
Definition. A tensorz € VP @ V¢ transforms under the action gfc G as
dp...d
/Z:.l?.sz “ = Gzll.l??bp ta 9 05...02101 lefﬁdpcq ) (314)

where thel’? @ V9 tensor repof g € G is defined by the group acting on all indices
of x.

Gyl et =GN G, G, Gy M Gy, P Gy, M (3.15)

b1...bgq ) Cp...C2C1
Tensors can be combined into other tensors by
(a) addition:
2gh¢ = i + By, aBeC, (3.16)
(b) product:
2055t = a2y, (3.17)

(c) contraction:Setting an upper and a lower index equal and summing over all of
its values yields a tenserc VP~ @ V4~1 without these indices:

be...d __ _abc...d ad __ _abc, d
el = 280 = xS, . (3.18)

e...af > e
A tensorz € VP ® V4 transforms linearly under the action gf so it can be
considered a vector in the= n?T4-dimensional vector spadé = V? @ V4. We
can replace the array of its indices by one collective index:

X = it 2% 3.19
by.
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One could be more explicit and give a table like

11...1 21...1
TI=T1] T2 =T 5o, Td =Ty (3.20)
but that is unnecessary, as we shall use the compact index notation only as a short-

hand.

Definition. Hermitian conjugatioris effected by complex conjugation and index
transposition:

(h")ede = (h5a®)" . (3.21)

cde —

Complex conjugation interchanges upper and lower indices, &slif){ transposi-
tion reverses their order. A matrixiermitianif its elements satisfy

(Mh¢ = M. (3.22)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as\V/;,* = (M'),* = M9,

Definition. The tensor dual te,, defined by 8.19 has form
= glebr (3.23)

q---a20a71
Combined, the above definitions lead to the hermitian conjugation rule for collective

indices: a collective index is raised or lowered by interchanging the upper and lower
indices and reversing their order:

- aiaz...aq a bp...bl
a_{ blbp} “ _{aq...agal}' (324)
This transposition convention will be motivated further by the diagrammatic rules

of sectiond. 1
The tensor rep3. 15 can be treated as[éxd) matrix

Gaﬁ - Ga1a2~~aq dp...d1 (325)

biliby, @ Cq.--C2€T Y

and the tensor transformatio®. {4 takes the usual matrix form
zl, =G s (3.26)

[e3

Tensor: ordering of upper only, lower only indices matters.

Matrix acting on a tensor: must separate "in", "out" indices (or groups of inidices).
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If a bilinear formm/(z, y) = %M,y is invariant for allg € G, the matrix
M.’ = G,°G®4M.¢ (3.30)
is aninvariant matrix Multiplying with G¢ and using the unitary conditioB(13),
we find that the invariant matriceemmutewith all transformationg € G:
[G,M] =0. (3.31)
If we wish to treat a tensor with equal number of upper and lower indices as a
matrixM : VP @ VI — VP @ V4,

M) =M Zi_‘f?g;“ﬂf;;;;j;cl , (3.32)
then the invariancecondition (3.29 will take the commutatorform (3.31). Our
conventionof separatinghe two setsof indicesby a comma,andreversingthe
orderof the indicesto theright of the comma,is motivatedby the diagrammatic
notationintroducedbelow (see(4.6)).
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